Show simple item record

dc.contributor.authorWiedmann, Mareike
dc.contributor.authorDranchak, Patricia K.
dc.contributor.authorAitha, Mahesh
dc.contributor.authorQueme, Bryan
dc.contributor.authorCollmus, Christopher D.
dc.contributor.authorKashipathy, Maithri M.
dc.contributor.authorKanter, Liza
dc.contributor.authorLamy, Laurence
dc.contributor.authorRogers, Joseph M.
dc.contributor.authorTao, Dingyin
dc.contributor.authorBattaile, Kevin P.
dc.contributor.authorRai, Ganesha
dc.contributor.authorLovell, Scott
dc.contributor.authorSuga, Hiroaki
dc.contributor.authorInglese, James
dc.date.accessioned2022-01-05T19:27:20Z
dc.date.available2022-01-05T19:27:20Z
dc.date.issued2021-04-01
dc.identifier.citationWiedmann, M., Dranchak, P. K., Aitha, M., Queme, B., Collmus, C. D., Kashipathy, M. M., Kanter, L., Lamy, L., Rogers, J. M., Tao, D., Battaile, K. P., Rai, G., Lovell, S., Suga, H., & Inglese, J. (2021). Structure-activity relationship of ipglycermide binding to phosphoglycerate mutases. The Journal of biological chemistry, 296, 100628. https://doi.org/10.1016/j.jbc.2021.100628en_US
dc.identifier.urihttp://hdl.handle.net/1808/32337
dc.description.abstractCatalysis of human phosphoglycerate mutase is dependent on a 2,3-bisphosphoglycerate cofactor (dPGM), whereas the nonhomologous isozyme in many parasitic species is cofactor independent (iPGM). This mechanistic and phylogenetic diversity offers an opportunity for selective pharmacologic targeting of glycolysis in disease-causing organisms. We previously discovered ipglycermide, a potent inhibitor of iPGM, from a large combinatorial cyclic peptide library. To fully delineate the ipglycermide pharmacophore, herein we construct a detailed structure–activity relationship using 280 substituted ipglycermide analogs. Binding affinities of these analogs to immobilized Caenorhabditis elegans iPGM, measured as fold enrichment relative to the index residue by deep sequencing of an mRNA display library, illuminated the significance of each amino acid to the pharmacophore. Using cocrystal structures and binding kinetics, we show that the high affinity of ipglycermide for iPGM orthologs, from Brugia malayi, Onchocerca volvulus, Dirofilaria immitis, and Escherichia coli, is achieved by a codependence between (1) the off-rate mediated by the macrocycle Cys14 thiolate coordination to an active-site Zn2+ in the iPGM phosphatase domain and (2) shape complementarity surrounding the macrocyclic core at the phosphotransferase–phosphatase domain interface. Our results show that the high-affinity binding of ipglycermide to iPGMs freezes these structurally dynamic enzymes into an inactive, stable complex.en_US
dc.publisherElsevieren_US
dc.rights© 2021 The Authors. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY license.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.subjectAffinity selectionen_US
dc.subjectBinding kineticsen_US
dc.subjectCrystallographyen_US
dc.subjectCyclic peptidesen_US
dc.subjectGlycolysisen_US
dc.subjectNematodeen_US
dc.subjectProtein dynamicsen_US
dc.subjectInfectious diseaseen_US
dc.subjectSolid phase peptide synthesisen_US
dc.subjectInhibitoren_US
dc.titleStructure–activity relationship of ipglycermide binding to phosphoglycerate mutasesen_US
dc.typeArticleen_US
kusw.kuauthorKashipathy, Maithri M.
kusw.kuauthorLovell, Scott
kusw.kudepartmentProtein Structure Laboratoryen_US
kusw.kudepartmentStructural Biology Centeren_US
dc.identifier.doi10.1016/j.jbc.2021.100628en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-4728-7155en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-1349-4885en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0003-0377-4792en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0003-1509-9982en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-8616-764Xen_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-6967-9969en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-1313-4089en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-6531-2740en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0003-0833-3259en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-9763-9641en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-3215-4472en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-5298-9186en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-7332-5717en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.identifier.pmidPMC8113725en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2021 The Authors. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY license.
Except where otherwise noted, this item's license is described as: © 2021 The Authors. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY license.