KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In vivo microdialysis coupled with electrophysiology for the neurochemical analysis of epileptic seizures

    Thumbnail
    View/Open
    Crick_Eric_Wayne_2007_6599140.pdf (1.801Mb)
    Issue Date
    2007-05-31
    Author
    Crick, Eric Wayne
    Publisher
    University of Kansas
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Chemistry
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    The focus of this research has been on the development of analytical techniques for the determination of the neurochemistry pertaining to animals that model epilepsy. The utilization of microdialysis sampling coupled with electrophysiological techniques played a vital role in the understanding of these neurochemical changes.

    A thorough working knowledge of epilepsy models is essential for the development of new therapies for the neurological disorder. Initial work focused on a well known convulsant, 3-mercaptopropionic acid (3-MPA). An epileptic seizure model employing 3-MPA does not exist. A constant infusion dosing scheme was employed with a steady-state concentration of 3-MPA in the brain. The ability to control the 3-MPA concentration was an excellent independent variable for further experimentation involving the correlation of neurochemical events. A PK-PD study was conducted using simultaneous ECoG recordings.

    A major difficulty with microdialysis sampling of neurochemical events is the ability to fully capture the events with sufficient temporal resolution. The sampling frequency is often hindered by the analytical instrumentation commonly available. Liquid chromatography was initially utilized for the neurochemical analysis of 5 minute microdialysis collections. However, it was found that this temporal resolution was not sufficient for obtaining meaningful neurochemical data from the seizure model.

    Capillary electrophoresis was also employed, allowing for the neurochemical analysis with 60 second resolution. A biphasic increase in the levels of glutamate and dopamine were observed with the enhanced temporal resolution. Moreover, the levels of glutamate and gamma-aminobutyric acid had sustained changes over extended periods of time. It was determined that glutamate receptor desensitization played a crucial role in these findings. The shortcomings of these methods include poor derivatized sample stability and decreased catecholamine sensitivity in a complex analysis of amino acid and biogenic amine neurotransmitters.

    To overcome these limitations, additional instrumentation was developed using a dual-parallel electrode detection scheme for capillary electrophoresis. This design provided increased sensitivity by simultaneously operating in the series and parallel-opposed configurations, thereby permitting redox cycling. It also allowed for enhanced selectivity by operating in the parallel-adjacent configuration. This scheme would help to improve the sample stability due to the electroactive nature of the catecholamines.
    Description
    Dissertation (Ph.D.)--University of Kansas, Chemistry, 2007.
    URI
    http://hdl.handle.net/1808/31980
    Collections
    • Dissertations [4475]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps