Concept based author recommender system for CiteSeer
Issue Date
2007-05-31Author
Chandrasekaran, Kannan
Publisher
University of Kansas
Type
Thesis
Degree Level
M.S.
Discipline
Electrical Engineering & Computer Science
Rights
This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
Metadata
Show full item recordAbstract
The information explosion in today's electronic world has created the need for information filtering techniques that help users filter out extraneous content to identify the right information they need to make important decisions. Recommender systems are one approach to this problem, based on presenting potential items of interest to a user rather than requiring the user to go looking for them. In this paper we propose a recommender system that recommends research papers of potential interest to the author from the CiteSeer database. For each author participating in the study, we create a user profile based on their previously published papers. Based on similarities between the user profile and profiles for documents in the collection, additional papers are recommended to the author. We introduce a novel way of representing the user profiles as tree of concepts and an algorithm for computing the similarity between the user profiles and document profiles using a tree-edit distance measure. Experiments with a group of volunteers show that our tree based algorithm provides better recommendations than a traditional vector-space model based technique.
Description
Thesis (M.S.)--University of Kansas, Electrical Engineering & Computer Science, 2007.
Collections
- Theses [3906]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.