KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Electrical Engineering and Computer Science Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Electrical Engineering and Computer Science Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Taming WOLF: Building a More Functional and User-Friendly Framework

    Thumbnail
    View/Open
    SaderC_ProjectReport.pdf (948.6Kb)
    Issue Date
    2019-06-12
    Author
    Sader, Casey
    Type
    Project
    Rights
    Copyright 2019 Casey Sader
    Metadata
    Show full item record
    Abstract
    Machine learning is all about automation. Many tools have been created to help data scientists automate repeated tasks and train models. These tools require varying levels of user experience to be used effectively. The “machine learning WOrk fLow management Framework" (WOLF) aims to automate the machine-learning pipeline. One of its key uses is to discover which machine-learning model and hyper-parameters are the best configuration for a dataset. In this project, features were explored that could be added to make WOLF behave as a full pipeline in order to be helpful for novice and experienced data scientists alike. One feature to make WOLF more accessible is a website version that can be accessed from anywhere and make using WOLF much more intuitive. To keep WOLF aligned with the most recent trends and models, the ability to train a neural network using the TensorFlow framework and Keras library were added. This project also introduced the ability to pickle and save trained models. Designing the option for using the models to make predictions within the WOLF framework on another collection of data is a fundamental side-effect of saving the models. Understanding how the model makes predictions is a beneficial component of machine learning. This project aids in that understanding by calculating and reporting the relative importance of the dataset features for the given model. Incorporating all these additions to WOLF makes it a more functional and user-friendly framework for machine learning tasks.
    Description
    This project was submitted to the graduate degree program in the Department of Electrical Engineering and Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Masters of Science in Computer Science.
    URI
    http://hdl.handle.net/1808/31861
    Collections
    • Electrical Engineering and Computer Science Scholarly Works [302]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps