Show simple item record

dc.contributor.authorSakai, Shotaro
dc.contributor.authorCravens, Thomas Edward
dc.contributor.authorAndersson, Laila
dc.contributor.authorFowler, Christopher M.
dc.contributor.authorMitchell, David L.
dc.contributor.authorMazelle, Christian
dc.contributor.authorThiemann, Edward M. B.
dc.contributor.authorEparvier, Francis G.
dc.contributor.authorBrain, David A.
dc.contributor.authorSeki, Kanako
dc.date.accessioned2021-02-22T22:57:21Z
dc.date.available2021-02-22T22:57:21Z
dc.date.issued2019-08-23
dc.identifier.citationSakai, S., Cravens, T. E., Andersson, L., Fowler, C. M., Mitchell, D. L., Mazelle, C., et al. (2019). Low electron temperatures observed at Mars by MAVEN on dayside crustal magnetic field lines. Journal of Geophysical Research: Space Physics, 124, 7629– 7637. https://doi.org/10.1029/2019JA026961en_US
dc.identifier.urihttp://hdl.handle.net/1808/31452
dc.descriptionAn edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.en_US
dc.description.abstractThe ionospheric electron temperature is important for determining the neutral/photochemical escape rate from the Martian atmosphere via the dissociative recombination of O2+. The Langmuir Probe and Waves instrument onboard MAVEN (Mars Atmosphere and Volatile EvolutioN) measures electron temperatures in the ionosphere. The current paper studies electron temperatures in the dayside for two regions where (1) crustal magnetic fields are dominant and (2) draped magnetic fields are dominant. Overall, the electron temperature is lower in the crustal‐field regions, namely, the strong magnetic field region, which is due to a transport of cold electrons along magnetic field lines from the lower to upper atmosphere. The electron temperature is also greater for high solar extreme ultraviolet conditions, which is associated with the local extreme ultraviolet energy deposition. The current models underestimate the electron temperature above 250‐km altitude in the crustal‐field region. Electron heat conduction associated with a photoelectron transport in the crustal‐field regions is altered due to kinetic effects, such the magnetic mirror and/or ambipolar electric field because the electron mean free path exceeds the relevant length scale for electron temperature. The mirror force can affect the electron and heat transport between low altitudes, where the neutral density and related electron cooling rates are the greatest, and high altitudes, while the ambipolar electric field decelerates the electron's upward motion. These effects have not been included in current models of the electron energetics, and consideration of such effects on the electron temperature in the crustal‐field region should be considered for future numerical simulations.en_US
dc.publisherWileyen_US
dc.rights© 2019. American Geophysical Union. All Rights Reserved.en_US
dc.titleLow Electron Temperatures Observed at Mars by MAVEN on Dayside Crustal Magnetic Field Linesen_US
dc.typeArticleen_US
kusw.kuauthorCravens, Thomas Edward
kusw.kudepartmentPhysics and Astronomyen_US
dc.identifier.doi10.1029/2019JA026961en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9135-2076en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0912-8353en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6384-7036en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3431-0739en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9154-7236en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5332-9561en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5305-9466en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7143-2730en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8932-368Xen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5557-9062en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record