Loading...
Thumbnail Image
Publication

Potential Thermal Enhancement of Lightweight Building Walls Derived From Using Phase Change Materials (PCMs)

Sun, Xiaoqin
Medina, Mario A.
Zhang, Yuan
Citations
Altmetric:
Abstract
This paper presents results of the potential thermal enhancement in building walls derived from using phase change materials (PCMs). Typical North American construction, namely, frame walls outfitted with hydrated-salt-based PCM with a melting temperature of 29°C were evaluated in well-controlled test houses under full weather conditions. It was found that PCMs produced reductions in energy gains during summer. The reductions were assessed via total heat transfer and peak heat transfer. For a 10 percentage by weight (wt%) PCM concentration, the largest peak flux reduction of 31.25% was observed when the PCM was integrated within a north-facing wall. For a 20 wt% PCM concentration, the largest peak flux reduction was 25.54% when the PCM pipes was installed on an east-facing wall. Doubling the amount of PCM did not produce improvement on heat flux reduction except for the east-facing wall. The indoor wall surface temperature and temperature amplitude was reduced by 1.5 and 1.4°C, respectively. The maximum time lag for peak heat flux was observed on the north-facing wall, which was 1.5 h for a 10 wt% PCM concentration and 2.25 h for a 20 wt% PCM concentration, respectively. To achieve the maximum energy savings, it is recommended that the PCMs be installed within west-facing walls.
Description
This work is licensed under a Creative Commons Attribution 4.0 International License.
Date
2019-02-22
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media
Research Projects
Organizational Units
Journal Issue
Keywords
Phase change materials (PCMs), Heat transfer through building walls, Energy management in buildings, Enhanced building enclosures, Heat flux reduction
Citation
Sun X, Medina MA and Zhang Y (2019) Potential Thermal Enhancement of Lightweight Building Walls Derived From Using Phase Change Materials (PCMs). Front. Energy Res. 7:13. doi: 10.3389/fenrg.2019.00013
Embedded videos