Show simple item record

dc.contributor.authorAaboud, M.
dc.contributor.authorRogan, Christopher
dc.contributor.authorATLAS Collaboration
dc.date.accessioned2021-01-08T20:24:57Z
dc.date.available2021-01-08T20:24:57Z
dc.date.issued2019-02-13
dc.identifier.citationAaboud, M., Aad, G., Abbott, B. et al. In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector. Eur. Phys. J. C 79, 135 (2019). https://doi.org/10.1140/epjc/s10052-019-6632-8en_US
dc.identifier.urihttp://hdl.handle.net/1808/31074
dc.descriptionThis work is licensed under a Creative Commons Attribution 4.0 International License.en_US
dc.description.abstractThe response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb−1 of 𝑠√=13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (𝑝T). The precision of the relative jet energy scale is 1–2% for 200 GeV < 𝑝T < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same 𝑝T range.en_US
dc.publisherSpringerOpenen_US
dc.rights© CERN for the benefit of the ATLAS collaboration 2019.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.titleIn situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detectoren_US
dc.typeArticleen_US
kusw.kuauthorRogan, Christopher
kusw.kudepartmentPhysics and Astronomyen_US
dc.identifier.doi10.1140/epjc/s10052-019-6632-8en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© CERN for the benefit of the ATLAS collaboration 2019.
Except where otherwise noted, this item's license is described as: © CERN for the benefit of the ATLAS collaboration 2019.