dc.contributor.author | Crossfield, Ian | |
dc.contributor.author | Lothringer, J. D. | |
dc.contributor.author | Flores, B. | |
dc.contributor.author | Mills, E. A. C. | |
dc.contributor.author | Freedman, R. | |
dc.contributor.author | Valverde, J. | |
dc.contributor.author | Miles, B. | |
dc.contributor.author | Guo, X. | |
dc.contributor.author | Skemer, A. | |
dc.date.accessioned | 2021-01-04T20:47:31Z | |
dc.date.available | 2021-01-04T20:47:31Z | |
dc.date.issued | 2019-01-17 | |
dc.identifier.citation | I. J. M. Crossfield et al 2019 ApJL 871 L3 | en_US |
dc.identifier.uri | http://hdl.handle.net/1808/31026 | |
dc.description | This work is licensed under a Creative Commons Attribution 4.0 International License. | en_US |
dc.description.abstract | Low-mass M dwarfs represent the most common outcome of star formation, but their complex emergent spectra hinder detailed studies of their composition and initial formation. The measurement of isotopic ratios is a key tool that has been used to unlock the formation of our solar system, the Sun, and the nuclear processes within more massive stars. We observed GJ 745AB, two M dwarfs orbiting in a wide binary, with the NASA Infrared Telescope Facility/iSHELL spectrograph. Our spectroscopy of CO in these stars at the 4.7 μm fundamental and 2.3 μm first-overtone rovibrational bandheads reveals ${}^{12}{{\rm{C}}}^{16}{\rm{O}}$, ${}^{13}{{\rm{C}}}^{16}{\rm{O}}$, and ${}^{12}{{\rm{C}}}^{18}{\rm{O}}$ in their photospheres. Because the stars are fully convective, the atomic constituents of these isotopologues should be uniformly mixed throughout the stars' interiors. We find that in these M dwarfs, both ${}^{12}{\rm{C}}$/${}^{13}{\rm{C}}$ and ${}^{16}{\rm{O}}$/${}^{18}{\rm{O}}$ greatly exceed the Solar values. These measurements cannot be explained solely by models of Galactic chemical evolution, but require that the stars formed from an interstellar medium significantly enriched by material ejected from an exploding core-collapse supernova. These isotopic measurements complement the elemental abundances provided by large-scale spectroscopic surveys, and open a new window onto studies of Galactic evolution, stellar populations, and individual systems. | en_US |
dc.publisher | American Astronomical Society | en_US |
dc.rights | © 2019. The American Astronomical Society. | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US |
dc.subject | Infrared: stars | en_US |
dc.subject | Techniques: spectroscopic | en_US |
dc.subject | Stars: abundances | en_US |
dc.subject | Supernovae: general | en_US |
dc.title | Unusual Isotopic Abundances in a Fully Convective Stellar Binary | en_US |
dc.type | Article | en_US |
kusw.kuauthor | Crossfield, Ian | |
kusw.kudepartment | Physics and Astronomy | en_US |
kusw.oanotes | Per Sherpa Romeo 01/04/2021:Astrophysical Journal
[Open panel below]Publication Information
TitleAstrophysical Journal [English]
ISSNs
Print: 0004-637X
Electronic: 1538-4357
URLhttp://iopscience.iop.org/0004-637X
Publishers
American Astronomical Society [Client Organisation]
IOP Publishing [Society Publisher]
[Open panel below]Publisher Policy
Open Access pathways permitted by this journal's policy are listed below by article version. Click on a pathway for a more detailed view.Published Version
[pathway a] NoneCC BY
Journal Website
Published Version
[pathway b]None
Author's Homepage
EmbargoNo Embargo
Copyright OwnerPublishers
LocationAuthor's Homepage
ConditionsPublished source must be acknowledged with citation | en_US |
dc.identifier.doi | 10.3847/2041-8213/aaf9b6 | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-3667-8633 | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-8782-1992 | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-2345-8888 | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-6098-3924 | en_US |
kusw.oaversion | Scholarly/refereed, publisher version | en_US |
kusw.oapolicy | This item meets KU Open Access policy criteria. | en_US |
kusw.proid | ID195708008448 | en_US |
dc.rights.accessrights | openAccess | en_US |