Development of a Multichannel Wideband Radar Demonstrator

View/ Open
Issue Date
2019-12-31Author
Carr, Kevin
Publisher
University of Kansas
Format
151 pages
Type
Thesis
Degree Level
M.S.
Discipline
Electrical Engineering & Computer Science
Rights
Copyright held by the author.
Metadata
Show full item recordAbstract
With the rise of software defined radios (SDR) and the trend towards integrating more RF components into MMICs the cost and complexity of multichannel radar develop- ment has gone down. High-speed RF data converters have seen continuous increases in both sampling rate and resolution, further rendering a growing subset of components in an RF chain unnecessary. A recent development in this trend is the Xilinx RF- SoC, which integrates multiple high speed data converters into the same package as an FPGA. The Center for Remote Sensing of Ice Sheets (CReSIS) is regularly upgrading its suite of sensor platforms spanning from HF depth sounders to Ka band altimeters. A radar platform was developed around the RFSoC to demonstrate the capabilities of the chip when acting as a digital backend and evaluate its role in future radar designs at CReSIS. A new ultra-wideband (UWB) FMCW RF frontend was designed that con- sists of multiple transmit and receive modules with a 6 GHz bandwidth centered at 5 GHz. An antenna array was constructed out of Vivaldi elements to validate radar system performance. Firmware developed for the RFSoC enables radar features such as beam forming, frequency notching, dynamic stretch processing, and variable gain correction. The feature set presented here may prove useful in future sensor platforms used for the remote sensing of snow, soil moisture, or crop canopies.
Collections
- Engineering Dissertations and Theses [1055]
- Theses [3906]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.