KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Topology Optimized Reinforced Concrete Walls Constructed with 3D Printed Formwork

    Thumbnail
    View/Open
    SL20-1.pdf (21.22Mb)
    Issue Date
    2020-01
    Author
    Mudaliar, Triveni
    Lequesne, Rémy D.
    Fadden, Matthew
    Publisher
    University of Kansas Center for Research, Inc.
    Type
    Technical Report
    Is part of series
    SL Report;20-1
    Published Version
    https://iri.ku.edu/reports
    Metadata
    Show full item record
    Abstract
    The construction industry continually evolves to adapt to gains in knowledge, market pressures and new technologies. However, two promising new technologies, 3D printing and computational topology optimization, have not yet penetrated the civil engineering industry despite being important drivers of change in other fields. The aim of this study was the potential to overcome the major barriers to adoption of both technologies by using them in combination. Both theoretical and practical problems must still be addressed, but the potential impacts are significant: lightweight, architecturally pleasing, reduced volume structures.

    Two small-scale specimens were constructed and tested to demonstrate the feasibility of using additively manufactured (3D printed) formwork to construct complex reinforced concrete (RC) structures. The concept was shown to be viable. Areas were identified where further development is necessary before 3D printing can be used for large-scale cost-competitive formwork. An approach, based on the rule of mixtures, was proposed for applying computational topology optimization to RC structures. This was necessary because the computational topology optimization algorithm employed in this study assumes a structure is homogenous but RC structures are not. The approach was shown to work for optimizing an RC wall for force demands within the linear-elastic range of response.

    The sensitivity of optimization outputs to modeling parameters was investigated. The effects and interdependencies of mesh size, element type, number of optimization cycles, and target volume ratio on optimization outcome were demonstrated. The importance of ISO and “percent reduction” parameters on the process of importing the optimized geometry to ABAQUS was also demonstrated.

    Finally, a parametric study was conducted to examine the relationships between volume ratio and member strength and stiffness (volume ratio refers to the volume of the optimized structure divided by the volume of the original structure). The study used finite element models of topology optimized slender structural walls subjected to pseudo-static lateral force. It was shown that reductions in volume are not proportional to reductions in stiffness, as expected for slender walls that are flexure-dominated. Reductions in volume of 10 to 20% cause only approximately 3 to 7% reductions in uncracked member stiffness. These reductions in stiffness can be compensated for with use of modestly higher-strength concrete.
    URI
    http://hdl.handle.net/1808/30279
    Collections
    • Infrastructure Research Institute Scholarly Works [282]
    Citation
    Mudaliar, T., Lequesne, R. D., and Fadden, M., “Topology Optimized Reinforced Concrete Walls Constructed with 3D Printed Formwork,” SL Report 20-1, The University of Kansas Center for Research, Inc., Lawrence, KS, January 2020, 152 pp.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps