KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantitative Methods to Determine Brain Deposition of Peptides and Proteins after Delivery across the Blood-Brain Barrier

    Thumbnail
    View/Open
    Available after: 2020-08-31 (3.521Mb)
    Issue Date
    2019-08-31
    Author
    Ulapane, Kavisha Raneendri
    Publisher
    University of Kansas
    Format
    176 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Chemistry
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    It is very challenging to develop peptide and protein drugs for treatment of brain diseases because it is difficult to deliver them to the brain due to the presence of the blood-brain barrier (BBB). Therefore, there is an urgent need to develop new and alternative methods to deliver these drugs to the brain for treatment of brain diseases. ADTC5 and HAV6 peptides were derived from the binding sequence of the EC1 domain of E-cadherin protein, and these peptides can enhance the in vivo brain delivery of various molecules through the paracellular pathway of the BBB. Therefore, the overall goal of this project was to evaluate the activity of current and new cadherin cyclic peptides to enhance the in vivo brain delivery of peptides and proteins in rats and mice. The first goal of this project was to evaluate the activity of cadherin peptides (e.g., HAV6, HAV4, cHAVc3, and ADTC5) in delivering peptides (e.g., cIBR and cLABL) and 65 kDa galbumin protein to mouse and rat brains. The brain depositions of peptides and proteins were detected using near IR fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), and mass spectrometry. The brain delivery of unlabeled cIBR7 peptide into rat brains was done to confirm that the intact molecule could be detected in the brain. An efficient extraction method was developed to isolate cIBR7 and ADTC5 from the brain tissue. A novel LC/MS/MS method was developed and validated to quantify cIBR7, an internal standard, and ADTC5 in brain after in vivo delivery. Detection was performed using triple quadrupole tandem mass spectrometry and a multiple reaction monitoring technique. Our results showed a fourfold increase (p = 0.013) in the amount of intact cIBR7 in the brain when it was delivered using ADTC5 compared to cIBR7 alone. The second goal was to compare the activity of ADTC5 and HAV6 peptides in delivering various sized proteins, including IRdye800cw-labeled-lysozyme (15 kDa), albumin (65 kDa), IgG mAb (150 kDa), and fibronectin (220 kDa) into mouse brains. In addition, a quantitative NIRF imaging method was developed to determine brain depositions of these proteins. The results showed that ADTC5 peptide significantly enhanced brain delivery of lysozyme, albumin, and IgG mAb compared to controls; however, no enhancement was observed for fibronectin. HAV6 peptide could enhance the brain delivery of lysozyme, but not the other proteins. The third goal was to design and synthesize new cyclic peptides for better modulation of the BBB. An N-to-C terminal cyclization method was utilized to improve the plasma stability and activity to modulate the BBB of the peptide. Linear and cyclic ADTHAV peptides were designed by combining the sequences of ADTC5 and HAV6. Cyclic HAVN1 and HAVN2 peptides were designed as N-to-C terminal cyclic derivatives of linear HAV6 peptide as new BBB modulator peptides. Binding properties of cyclic ADTHAV and ADTC5 peptides to the EC1 domain of Ecadherin were determined using surface plasmon resonance (SPR), and ADTHAV was found to have higher binding affinity (Kd = 0.114 µM) than ADTC5 (Kd = 26.8 µM). The in vivo activities of these peptides to deliver an IRdye800cw-labeled IgG mAb into the brain were qualitatively and quantitatively determined using NIRF imaging. Cyclic HAVN1 and HAVN2 peptides enhanced brain delivery of IgG mAb compared to HAV6 peptide. Cyclic and linear ADTHAV as well as ADTC5 peptides enhanced brain delivery of IgG mAb. There seems to be a trend that cyclic ADTHAV peptide has better activity than linear ADTHAV under the current conditions (p = 0.07). Overall, these three studies support the potential use of cadherin peptides in transiently modulating the BBB to improve the brain delivery of peptides and proteins
    URI
    http://hdl.handle.net/1808/30229
    Collections
    • Chemistry Dissertations and Theses [336]
    • Dissertations [4475]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps