KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CHARACTERIZATION OF THE MAMMALIAN METHYLTRANSFERASE TGS1

    Thumbnail
    View/Open
    Available after: 2020-08-31 (3.787Mb)
    Issue Date
    2018-08-31
    Author
    Chen, Li
    Publisher
    University of Kansas
    Format
    133 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Molecular & Integrative Physiology
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    In eukaryotes, RNAs transcribed by RNA polymerase II are capped at their 5’ end. The cap is added co-transcriptionally and, in the case of mRNAs, contains one methyl group, resulting in a monomethylguanosine cap. In the case of some noncoding RNAs, two additional methyl groups are added, resulting in a 2,2,7-trimethylguanosine cap. TMG-capped RNAs include snRNAs (U1, U2, U4, U5, U7), snoRNAs (U3, U8, U13) and telomerase RNA. The enzyme responsible for the cap hypermethylation is methyltransferase Tgs1, initially identified as PIMT in human and mouse. Tgs1 deletion in yeasts results in mild cold-sensitive phenotype. However, early embryonic lethality has been reported in Tgs1-KO mice. We identified a mutant version of Tgs1 in the putative Tgs1-KO mouse cell line. Although the mutant Tgs1 retains its methyltransferase motif, it results in processing defect of U2 snRNA. To further understand the function of mammalian Tgs1, we have used genome editing to generate a human cell line deleted for endogenous Tgs1 and carrying a tetracycline-inducible version. Repression of human Tgs1 expression to undetectable level results in a severe growth phenotype in cell culture. The effects of Tgs1-depletion on RNA cap hypermethylation and gene expression were analyzed using the human conditional knockdown cell line. Our study provides new insights on a previously reported Tgs1-KO mouse model, generates new tools for characterization of mammalian Tgs1, and provides comprehensive information on the impact of Tgs1-depletion in mammalian cells.
    URI
    http://hdl.handle.net/1808/30139
    Collections
    • Dissertations [3958]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps