KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MASS IN THE HYPERBOLIC PLANE

    Thumbnail
    View/Open
    Mass in the hyperbolic plane.pdf (538.3Kb)
    Issue Date
    2019-02-17
    Author
    Stahl, Saul
    Publisher
    University of Kansas
    Type
    Working Paper
    Metadata
    Show full item record
    Abstract
    Archimedes computed the center of mass of several regions and bodies [Di-jksterhuis], and this fundamental physical notion may very well be due to him. He based his investigations of this concept on the notion of moment as it is used in his Law of the Lever. A hyperbolic version of this law was formulated in the nineteenth century leading to the notion of a hyperbolic center of mass of two point-masses [Andrade, Bonola]. In 1987 Galperin proposed an axiomatic definition of the center of mass of finite systems of point-masses in Euclidean, hyperbolic and elliptic n-dimensional spaces and proved its uniqueness. His proof is based on Minkowskian, or relativistic, models and evades the issue of moment. A surprising aspect of this work is that hyperbolic mass is not additive. Ungar [2004] used the theory of gyrogroups to show that in hyperbolic geometry the center of mass of three point-masses of equal mass coincides with the point of intersection of the medians. Some information regarding the centroids of finite point sets in spherical spaces can be found in [Fog, Fabricius-Bjerre].

    In this article we offer a physical motivation for the hyperbolic Law of the Lever and go on to provide a model-free definition and development of the notions of center of mass, moment, balance and mass of finite point-mass systems in hyperbolic geometry. All these notions are then extended to linear sets and laminae. Not surprisingly, the center of mass of the uniformly dense hyperbolic triangle coincides with the intersection of the triangle’s medians. However, it is pleasing that a hyperbolic analog of Archimedes’s mechanical method can be brought to bear on this problem. The masses of uniform disks and regular polygons are computed in the Gauss model and these formulas are very surprising. Other configurations are examined as well.
    URI
    http://hdl.handle.net/1808/29868
    Collections
    • Mathematics Scholarly Works [282]
    Citation
    Stahl, S. (2019). Mass in the Hyperbolic Plane. Working Paper.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps