KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    I Know What You Type on Your Phone: Keystroke Inference on Android Device Using Deep Learning

    Thumbnail
    View/Open
    wang_ku_0099M_16666_DATA_1.pdf (3.676Mb)
    Issue Date
    2019-08-31
    Author
    wang, lei
    Publisher
    University of Kansas
    Format
    70 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Given a list of smartphone sensor readings, such as accelerometer, gyroscope and light sensor, is there enough information present to predict a user’s input without access to either the raw text or keyboard log? With the increasing usage of smartphones as personal devices to access sensitive information on-the-go has put user privacy at risk. As the technology advances rapidly, smart- phones now equip multiple sensors to measure user motion, temperature and brightness to provide constant feedback to applications in order to receive accurate and current weather forecast, GPS information and so on. In the ecosystem of Android, sensor reading can be accessed without user permissions and this makes Android devices vulnerable to various side-channel attacks. In this thesis, we first create a native Android app to collect approximately 20700 keypresses from 30 volunteers. The text used for the data collection is carefully selected based on the bigram analysis we run on over 1.3 million tweets. We then present two approaches (single key press and bigram) for feature extraction, those features are constructed using accelerometer, gyroscope and light sensor readings. A deep neural network with four hidden layers is proposed as the baseline for this work, which achieves an accuracy of 47% using categorical cross entropy as the accuracy metric. A multi-view model then is proposed in the later work and multiple views are extracted and performance of the combination of each view is compared for analysis.
    URI
    http://hdl.handle.net/1808/29708
    Collections
    • Theses [3711]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps