KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental and Numerical Investigations of Wettability of Positive Electrodes for Li−O2 Batteries

    Thumbnail
    View/Open
    Wang_ku_0099D_16446_DATA_1.pdf (16.01Mb)
    Issue Date
    2019-05-31
    Author
    Wang, Fangzhou
    Publisher
    University of Kansas
    Format
    172 pages
    Type
    Dissertation
    Degree Level
    D.Eng.
    Discipline
    Mechanical Engineering
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The objective of this dissertation is to characterize the positive electrode wettability and its effects on the performance (e.g., discharge capacity) of Li−O2 batteries. The investigations include an experimental study of discharging electrodes with various wettabilities, proposing and examining the intermittent discharge strategy, and the numerical simulation of the distribution of the electrolyte at various saturations and of the discharge performance of Li−O2 batteries at the pore scale. Future work will measure the structure of positive electrodes using advanced imaging technology such as transmission X-ray microscopy. First, I fabricated the electrodes and adjusted their wettability by mixing acetylene black carbon particles with various binders. The wettability was quantitatively characterized by the contact angle and ionic resistance. The customized electrodes were then discharged in Li−O2 batteries at 0.1 mA/cm2 through which the relationship between electrode wettability and discharge capacity was obtained. The discharge capacity of the electrode with 15% PVDF (36.5°) binder was 1665.8 mAh/g while the customized electrode with 15% PTFE (128.4°) binder had a discharge capacity of 4160.8 mAh/g. The effects of lyophobicity on O2 transfer in the porous electrode have been proved. A positive electrode with mixed wettability was designed and tested, which acquired the highest specific discharge capacity of 5149.5 mAh/g. The structure of this electrode included two lyophobic carbon coatings on top and bottom and one lyophilic carbon coating in the middle. Further design may focus on appropriately configuring the wettability to balance the gas paths for O2 diffusion and wetted area for reaction sites. A novel strategy for discharging Li−O2 batteries was then proposed and identified. The battery was periodically discharged and rested, which can enhance O2 availability and increase the discharge capacity. Periodically resting the battery increased the specific discharge capacity by at least 50% at various current densities (0.1 - 1.5 mA/cm2). Afterward, the investigation combined the electrode wettability and the intermittent strategy. Compared with the continuous strategy, the capacity of lyophobic electrodes increased by over 100% when the intermittent strategy was applied. Besides, a multi-step discharge strategy can provide greater capacity when the battery is discharged at decreasing current rates (2.0, 1.5, and 1.0 mA/cm2). The importance of O2 diffusion is emphasized and provide practical strategies are proposed to improve the deep discharge capacity of Li-O2 batteries, especially at high current rates (> 1.0 mA/cm2). Finally, a numerical study was conducted to investigate the electrode with different saturations of the electrolyte. The effects of electrolyte saturation levels and the distribution of electrolyte have been demonstrated by comparing the corresponding discharge performance of Li-O2 batteries. It was found that fully saturated electrodes (100% saturation) have high oxygen transfer resistance, which will result in the lowest discharge capacity of 7.41 Ah/g. On the contrary, over-dried battery (with 1.0 mA/cm2). Finally, a numerical study was conducted to investigate the electrode with different saturations of the electrolyte. The effects of electrolyte saturation levels and the distribution of electrolyte have been demonstrated by comparing the corresponding discharge performance of Li-O2 batteries. It was found that fully saturated electrodes (100% saturation) have high oxygen transfer resistance, which will result in the lowest discharge capacity of 7.41 Ah/g. On the contrary, over-dried battery (with 7 Ah/g) at high current (20 A/m2) similar to hydrophilic electrodes which are fully saturated by the electrolyte at low current (1 A/m2). The modeling study found that designing the electrode with a mixture of lyophilic and lyophobic pores is critical to significantly increasing (by orders of magnitude) the operating current and power of the Li–O2 battery. In the future, plans are to characterize the geometry of the positive electrode using the imaging techniques (e.g., transmission X-ray microscopy) and gas sorption method. Based on the characterization of the porous structure, the relationship between the porous structure and the mass transport phenomena will be clarified.
    URI
    http://hdl.handle.net/1808/29696
    Collections
    • Engineering Dissertations and Theses [1055]
    • Dissertations [4472]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps