KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tunable Surface Plasmon Dynamics

    Thumbnail
    View/Open
    Ramos_ku_0099M_16513_DATA_1.pdf (1.646Mb)
    Issue Date
    2019-05-31
    Author
    Ramos, Ernesto Alexander
    Publisher
    University of Kansas
    Format
    59 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Due to their extreme spatial confinement, surface plasmon resonances show great potential in the design of future devices that would blur the boundaries between electronics and optics. Traditionally, plasmonic interactions are induced with geometries involving noble metals and dielectrics. However, accessing these plasmonic modes requires delicate election of material parameters with little margin for error, controllability, or room for signal bandwidth. To rectify this, two novel plasmonic mechanisms with a high degree of control are explored: For the near infrared region, transparent conductive oxides (TCOs) exhibit tunability not only in "static" plasmon generation (through material doping) but could also allow modulation on a plasmon carrier through external bias induced switching. These effects rely on the electron accumulation layer that is created at the interface between an insulator and a doped oxide. Here a rigorous study of the electromagnetic characteristics of these electron accumulation layers is presented. As a consequence of the spatially graded permittivity profiles of these systems it will be shown that these systems display unique properties. The concept of Accumulation-layer Surface Plasmons (ASP) is introduced and the conditions for the existence or for the suppression of surface-wave eigenmodes are analyzed. A second method could allow access to modes of arbitrarily high order. Sub-wavelength plasmonic nanoparticles can support an infinite discrete set of orthogonal localized surface plasmon modes, however only the lowest order resonances can be effectively excited by incident light alone. By allowing the background medium to vary in time, novel localized surface plasmon dynamics emerge. In particular, we show that these temporal permittivity variations lift the orthogonality of the localized surface plasmon modes and introduce coupling among different angular momentum states. Exploiting these dynamics, surface plasmon amplification of high order resonances can be achieved under the action of a spatially uniform optical pump of appropriate frequency.
    URI
    http://hdl.handle.net/1808/29691
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps