KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Waveform-Diverse Stretch Processing

    Thumbnail
    View/Open
    Hemmingsen_ku_0099M_16456_DATA_1.pdf (7.996Mb)
    Issue Date
    2019-05-31
    Author
    Hemmingsen, Dana Marie
    Publisher
    University of Kansas
    Format
    100 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Stretch processing with the use of a wideband LFM transmit waveform is a commonly used technique, and its popularity is in large part due to the large time-bandwidth product that provides fine range resolution capabilities for applications that require it. It allows pulse compression of echoes at a much lower sampling bandwidth without sacrificing any range resolution. Previously, this technique has been restrictive in terms of waveform diversity because the literature shows that the LFM is the only type of waveform that will result in a tone after stretch processing. However, there are also many examples in the literature that demonstrate an ability to compensate for distortions from an ideal LFM waveform structure caused by various hardware components in the transmitter and receiver. This idea of compensating for variations is borrowed here, and the use of nonlinear FM (NLFM) waveforms is proposed to facilitate more variety in wideband waveforms that are usable with stretch processing. A compensation transform that permits the use of these proposed NLFM waveforms replaces the final fast Fourier transform (FFT) stage of the stretch processing configuration, but the rest of the RF receive chain remains the same. This modification to the receive processing structure makes possible the use of waveform diversity for legacy radar systems that already employ stretch processing. Similarly, using the same concept of compensating for distortions to the LFM structure along with the notion that a Fourier transform is essentially the matched filter bank for an LFM waveform mixed with an LFM reference, a least-squares based mismatched filtering (MMF) scheme is proposed. This MMF could likewise be used to replace thefinal FFT stage, and can also facilitate the application of NLFM waveforms to legacy radar systems. The efficacy of these filtering approaches (compensation transform and least-squares based MMF) are demonstrated in simulation and experimentally using open-air measurements and are applied to different scenarios of NLFM waveform to assess the results and provide a means of comparison between the two techniques.
    URI
    http://hdl.handle.net/1808/29657
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3797]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps