KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Undergraduate Research at KU
    • Undergraduate Research, including Senior Theses
    • View Item
    •   KU ScholarWorks
    • Undergraduate Research at KU
    • Undergraduate Research, including Senior Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    If It’s Not Broke, Break It, and then Break It Again: Understanding [Cp*Rh] Catalysts for Hydrogen Evolution by Investigation of Remarkably Inert Analogues

    Thumbnail
    View/Open
    Available after June 30, 2021 (14.23Mb)
    Issue Date
    2019-05
    Author
    Boyd, Emily A.
    Publisher
    Department of Chemistry, University of Kansas
    Type
    Thesis
    Discipline
    Chemistry
    Rights
    Copyright 2019, Emily A. Boyd
    Metadata
    Show full item record
    Abstract
    Monomeric half-sandwich rhodium hydride complexes are often proposed as intermediates in catalytic cycles, but relatively few such compounds have been isolated and studied, limiting understanding of their properties. In this thesis, the preparation of a monomeric rhodium(III) hydride complex bearing the pentamethylcyclopentadienyl (Cp*) and bis(diphenylphosphino)benzene (dppb) ligands is reported. The hydride complex is formed rapidly upon addition of weak acid to a reduced precursor complex, Cp*Rh(dppb). Single-crystal X-ray diffraction data for the [Cp*Rh] hydride, which were previously unavailable for this class of compounds, provide evidence of the direct Rh–H interaction. Complementary infrared spectra show the Rh–H stretching frequency at 1986 cm–1. In contrast to results with other [Cp*Rh] complexes bearing diimine ligands, treatment of the isolated hydride with strong acid does not result in hydrogen evolution. Electrochemical studies reveal that the hydride complex can be reduced only at very negative potentials (ca. –2.5 V vs. ferrocenium/ferrocene), resulting in Rh–H bond cleavage and hydrogen generation. Experimentally determined thermochemical parameters for reactions of the [Cp*Rh] hydride and its reduced form provide a rationale for the observed reactivity differences between the dppb and analogous diimine frameworks that can generate H2 with moderately strong acids. These results are discussed in the context of development of design rules for improved catalysts bearing the [Cp*] ligand.

    To gain further insight into the electronic properties of the phosphine-based ligands that favor metal hydrides and limit catalysis, a second series of [Cp*Rh] complexes supported by the redox-active bidentate diphosphine ligand bis(diphenylphosphino)ferrocene (dppf) is described, with particular attention paid to the outcomes of proton and electron transfer on this framework. Notably, Cp*Rh(dppf) exhibits a quasireversible RhII/I reduction at –0.96 V vs. Fc+/0 rather than undergoing a net 2e– RhIII/I process as is often observed on the [Cp*Rh] platform. This behavior provides access to a species in the relatively uncommon rhodium(II) oxidation state which has been characterized by electron paramagnetic resonance spectroscopy. Protonation of Cp*Rh(dppf) results in formation of an isolable [Cp*Rh] monohydride that is inert to protonolysis, providing a second example of the stabilizing effect bidentate diphosphine ligands have on Rh–H bonds. The quasireversibility of the dppf-centered FeIII/II couple of the rhodium monohydride [Cp*Rh(dppf)H]+ at +0.41 V vs. the ferrocenium/ferrocene redox couple facilitates a rigorous thermochemical analysis of the system, from which we have determined that oxidation centered at the dppf ligand results in dramatically increased acidity of the Rh–H bond by 23 pKa units.
    Description
    This undergraduate thesis was submitted in partial fulfillment of the requirements for the Degree of Bachelor of Science with Honors in Chemistry
    URI
    http://hdl.handle.net/1808/29290
    Collections
    • Undergraduate Research, including Senior Theses [63]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps