Decompositions of Simplicial Complexes
Issue Date
2018-08-31Author
Goeckner, Bennet
Publisher
University of Kansas
Format
97 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Mathematics
Rights
Copyright held by the author.
Metadata
Show full item recordAbstract
In this thesis we study the interplay between various combinatorial, algebraic, and topological properties of simplicial complexes. We focus on when these properties imply the existence of decompositions of the face poset. In Chapter 2, we present a counterexample to Stanley's partitionability conjecture, we give a characterization of the h-vectors of Cohen-Macaulay relative complexes, and we construct a family of disconnected partitionable complexes. In Chapter 3, we introduce colorated cohomology, which aims to combine the theories of color shifting and iterated homology. Colorated cohomology gives rise to certain decompositions of balanced complexes that preserve the balanced structure. We give conditions that would guarantee the existence of a weaker form of Stanley's partitionability conjecture for balanced Cohen-Macaulay complexes. We consider Stanley's conjecture on k-fold acyclic complexes in Chapter 4, and we show that a relaxation of this conjecture holds in general. We also show that the conjecture holds in the case when k is the dimension of a given complex, and we present a framework that may lead to a counterexample to the original version of this conjecture.
Collections
- Dissertations [4625]
- Mathematics Dissertations and Theses [179]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.