KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stability of Periodic Waves in Nonlocal Dispersive Equations

    Thumbnail
    View/Open
    Claassen_ku_0099D_15929_DATA_1.pdf (1.908Mb)
    Issue Date
    2018-05-31
    Author
    Claassen, Kyle Matthew
    Publisher
    University of Kansas
    Format
    166 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Mathematics
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    In this work consisting of joint projects with my advisor, Dr. Mathew Johnson, we study the existence and stability of periodic waves in equations that possess nonlocal dispersion, i.e. equations in which the dispersion relation between the temporal frequency, omega, and wavenumber, k, of a plane wave is not polynomial in ik. In models that involve only classical derivative operators (known as local equations), the behavior of the system at a point is influenced solely by the behavior in an arbitrarily small neighborhood. In contrast, equations involving nonlocal operators incorporate long-range interactions as well. Such operators appear in numerous applications, including water wave theory and mathematical biology. Specifically, we establish the existence and nonlinear stability of a special class of periodic bound state solutions of the Fractional Nonlinear Schrodinger Equation, where the nonlocality of the fractional Laplacian presents formidable analytical challenges and elicits the development of functional-analytic tools to complement the absence of more-understood techniques commonly used to analyze local equations. Further, we use numerical methods to survey the existence and spectral stability of small- and large-amplitude periodic wavetrains in Bidirectional Whitham water wave models, which implement the exact (nonlocal) dispersion relation of the incompressible Euler equations and are thus expected to better capture high-frequency phenomena than the unidirectional Whitham and Korteweg-de Vries (KdV) equations.
    URI
    http://hdl.handle.net/1808/27876
    Collections
    • Dissertations [4475]
    • Mathematics Dissertations and Theses [179]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps