Show simple item record

dc.contributor.advisorArnold, Emily J
dc.contributor.authorMendoza Strilchuk, Pedro
dc.date.accessioned2019-01-01T21:15:21Z
dc.date.available2019-01-01T21:15:21Z
dc.date.issued2018-05-31
dc.date.submitted2018
dc.identifier.otherhttp://dissertations.umi.com/ku:15825
dc.identifier.urihttp://hdl.handle.net/1808/27597
dc.description.abstractAirborne and spaceborne radar has long been an effective tool for remote sensing, surveillance, and reconnaissance. Most airborne systems utilize antenna arrays that are installed inside the moldline of the aircraft or in radomes that protect the array from in-flight loads. While externally-mounted arrays can offer the advantage of larger apertures, sensor-vehicle interactions often result in performance degradation of both systems. The presence of an externally-mounted array will increase the vehicle’s drag and potentially affect the dynamics and control of the vehicle. In addition, in-flight structural loads will deform the array, thus resulting in relative phase errors. While there exist a multitude of physics-based simulation tools to determine the effects of the array on the aircraft performance, existing tools are not sufficient for generating deformed arrays necessary for determining in-flight array performance. In response to this need, a computer tool for analyzing antennas undergoing structural loads is developed. The Antenna Deformation Tool (ADT) has two primary uses: generating deformed geometry from the output of a structural Finite Element Model (FEM) for use in an Electromagnetic (EM) simulation, and designing conformal antenna arrays. The two commercial software packages ADT is optimized for are MSC NASTRAN and ANSYS HFSS. Specifically, ADT is designed to generate a deformed 3D Computer Aided Design (CAD) model from a NASTRAN structural mesh. The resulting CAD model is compatible with HFSS electromagnetic simulation software for the assessment of the effects of loads on performance. The main purpose for the development of ADT is to facilitate studies of how structural deformations affect airborne antenna arrays performance and to provide the capability to perform studies easily and quickly using different antennas on the same structural model. ADT capabilities are demonstrated using several representative airborne antenna array structures. ADT is also demonstrated in the design of conformal antenna arrays. ADT can import CAD geometry and deform it according to a prescribed deformation field. The deformation field can either be determined from structural simulations or be provided by the user. This functionality allows the user to take an existing planar antenna design and conform it to a desired shape. Within the scope of airborne antenna arrays, this would allow an engineer to conform the antenna to the moldline of the aircraft or other support structure. Currently, ADT can interpret only quad and triangular 2D elements from NASTRAN. In addition, its ability to interpret a surface from a point cloud is limited to surface meshes in which there are exactly four explicit vertices, or surfaces which have a fairly even boundary with no major discontinuities and can be divided into four even segments. ADT is tested on NASTRAN structural models of small to medium complexity, and the geometry generated from simple models is used in HFSS simulations with success (with occasional post processing required). The antenna deformation submodule shows favorable performance with sheet and solid CAD geometry, though post-processing is required in the case of the latter. Results of some deformed antennas simulated with HFSS in the 200 MHz range are presented. The surface error of the geometry produced by ADT varies with the type of input mesh, with curved meshes and surfaces having higher errors. In terms of average element edge length, the maximum surface error is up to 1% for surfaces with no to small curvatures, and up to 3.6% for highly curved surfaces. This translates to about 0.17% of the mesh diagonal. ADT contains a set of classes and functions which provide ample capabilities for surface generation from meshes, and the process implemented is mostly automatic, requiring minimal user intervention. Due to ADT defining deformed geometry purely on separate meshes, adjacent surfaces are not associative and continuity between them is not guaranteed, which inherently can result in small intersections. These intersections can cause meshing problems with HFSS; however, these issues can be mitigated by adding a small offset. While demonstrated applications are still limited, ADT promises to substantially contribute to the design of aircraft-integrated antennas and multifunctional structures. With very limited capabilities for generating and assessing deformed antenna geometry currently existing, ADT represents a unique tool. ADT could be used not only in developing the next-generation of airborne remote sensing technologies, but to characterize in-flight performance of existing systems as well.
dc.format.extent208 pages
dc.language.isoen
dc.publisherUniversity of Kansas
dc.rightsCopyright held by the author.
dc.subjectRemote sensing
dc.subjectAerospace engineering
dc.subjectantenna
dc.subjectB-splines
dc.subjectconfromal
dc.subjectremote sensing
dc.subjectsimulation coupling
dc.titleStructural-Electromagnetic Simulation Coupling and Conformal Antenna Design Tool
dc.typeThesis
dc.contributor.cmtememberHale, Richard D
dc.contributor.cmtememberBarrett-Gonzales, Ronald M
dc.thesis.degreeDisciplineAerospace Engineering
dc.thesis.degreeLevelM.S.
dc.identifier.orcid
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record