KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Microfluidic Based Portable Analyzer for Continuous Monitoring of Glutamate and other Amino Acid Neurotransmitters

    Thumbnail
    View/Open
    Available after: 2018-12-31 (6.289Mb)
    Issue Date
    2017-12-31
    Author
    Oborny, Nathan John
    Publisher
    University of Kansas
    Format
    260 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Bioengineering
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The amino acid glutamate (Glu) is one of the most ubiquitous neurotransmitters in the brain and the chief excitatory neurotransmitter. As a neurotransmitter, Glu is integral to the normal workings of the brain and is involved in many functions, such as memory formation and long-term potentiation, via action on multiple receptors. Two primary classes of Glu receptors, metabotropic and ionotropic respond to the concentration of Glu in the extracellular space of the brain in a dose dependent manner. Large excesses of Glu have been shown to produce an excitotoxic effect, which can lead to the long-term neuronal damage seen in many neurological disorders including stroke and traumatic brain injury (TBI). Following an event such as these, methods for continuous monitoring of Glu concentrations in the brain can be very useful to clinicians for determining the best timing for pharmacological intervention, provided the acquisition of that information can itself be performed in a timely manner. With that in mind, this thesis focuses on the development of analytical methods that will provide information on the extracellular concentration of glutamate and other amino acids in a timely manner and thereby providing actionable information for a clinician. Microdialysis (MD) is an in vivo sampling method that can be used to monitor multiple analytes simultaneously while also enabling the delivery of a pharmaceutical intervention directly to the site of the probe This technique can provide a powerful window into tissue function and health when combined with a separation-based analytical method. However, due to the need for very low flow rates, a trade off exists with regard to sample concentration and time. In order to maximize the concentration and minimize the time required, sensitive methods of detection must be used such as laser induced fluorescence (LIF) detection. To minimize the time required for sample analysis (and make point of care analysis possible), a portable fluorescence detection system for use with microchip electrophoresis was developed. With this system, six neuroactive amines commonly found in brain dialysate (arginine, citrulline, taurine, histamine, glutamate, and aspartate) were derivatized offline with naphthalene-2,3-dicarboxaldehyde/cyanide, separated electrophoretic ally, and detected by fluorescence. It was found that this system was able to detect these analytes of interest within a range of 250 nM – 1.3 µM, which was adequate for subsequent detection in a microdialysis sample collected from the brain of an anesthetized rat. Finally, the design and evaluation of a microfluidic device for coupling microdialysis to microchip electrophoresis with on-line derivatization (MD-ME) is discussed. By coupling sampling directly to the microchip, elements that would otherwise delay analysis such as the need to transport volumes to the analysis system or the wait for the generation of larger sample volumes can be avoided. The MD-ME device was modeled first using COMSOL Multiphysics™ in an effort to optimize the device geometry, allowing on-line sampling with minimal back pressure, but with complete sample derivatization prior to analysis. Following this, the device was evaluated experimentally to detect Glu samples collected via microdialysis over an extended time period. While the limits of detection for Glu were found to be slightly high for immediate use for in vivo brain sampling, it is hoped that modifications to materials used to construct the microchip may eliminate this problem.
    URI
    http://hdl.handle.net/1808/27340
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps