Show simple item record

dc.contributor.authorLillis, Robert J.
dc.contributor.authorDeighan, Justin
dc.contributor.authorFox, Jane L.
dc.contributor.authorBougher, Stephen W.
dc.contributor.authorLee, Yuni
dc.contributor.authorCombi, Michael R.
dc.contributor.authorCravens, Thomas Edward
dc.contributor.authorRahmati, Ali
dc.contributor.authorMahaffy, Paul R.
dc.contributor.authorBenna, Mehdi
dc.contributor.authorElrod, Meredith K.
dc.contributor.authorMcFadden, James P.
dc.contributor.authorErgun, Robert E.
dc.contributor.authorAndersson, Laila
dc.contributor.authorFowler, Christopher M.
dc.contributor.authorJakosky, Bruce M.
dc.contributor.authorThiemann, Ed
dc.contributor.authorEparvier, Frank
dc.contributor.authorHalekas, Jasper S.
dc.contributor.authorLeblanc, François
dc.contributor.authorChaufray, Jean-Yves
dc.date.accessioned2018-10-26T19:38:44Z
dc.date.available2018-10-26T19:38:44Z
dc.date.issued2017-02-21
dc.identifier.citationLillis, R. J., et al. (2017), Photochemical escape of oxygen from Mars: First results from MAVEN in situ data, J. Geophys. Res. Space Physics, 122, 3815–3836, doi:10.1002/2016JA023525en_US
dc.identifier.urihttp://hdl.handle.net/1808/27074
dc.description.abstractPhotochemical escape of atomic oxygen is thought to be one of the dominant channels for Martian atmospheric loss today and played a potentially major role in climate evolution. Mars Atmosphere and Volatile Evolution Mission (MAVEN) is the first mission capable of measuring, in situ, the relevant quantities necessary to calculate photochemical escape fluxes. We utilize 18 months of data from three MAVEN instruments: Langmuir Probe and Waves, Neutral Gas and Ion Mass Spectrometer, and SupraThermal And Thermal Ion Composition. From these data, we calculate altitude profiles of the production rate of hot oxygen atoms from the dissociative recombination of O2+ and the probability that such atoms will escape the Mars atmosphere. From this, we determine escape fluxes for 815 periapsis passes. Derived average dayside hot O escape rates range from 1.2 to 5.5 × 1025 s−1, depending on season and EUV flux, consistent with several pre‐MAVEN predictions and in broad agreement with estimates made with other MAVEN measurements. Hot O escape fluxes do not vary significantly with dayside solar zenith angle or crustal magnetic field strength but depend on CO2 photoionization frequency with a power law whose exponent is 2.6 ± 0.6, an unexpectedly high value which may be partially due to seasonal and geographic sampling. From this dependence and historical EUV measurements over 70 years, we estimate a modern‐era average escape rate of 4.3 × 1025 s−1. Extrapolating this dependence to early solar system, EUV conditions gives total losses of 13, 49, 189, and 483 mbar of oxygen over 1–3 and 3.5 Gyr, respectively, with uncertainties significantly increasing with time in the past.en_US
dc.publisherAmerican Geophysical Unionen_US
dc.rights©2017. American Geophysical Union. All Rights Reserved.en_US
dc.subjectMarsen_US
dc.subjectAtmosphereen_US
dc.subjectOxygenen_US
dc.subjectDissociativeen_US
dc.subjectPhotochemicalen_US
dc.subjectEscapeen_US
dc.titlePhotochemical escape of oxygen from Mars: First results from MAVEN in situ dataen_US
dc.typeArticleen_US
kusw.kuauthorCravens, Thomas E.
kusw.kudepartmentPhysics and Astronomyen_US
dc.identifier.doi10.1002/2016JA023525en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2770-4820 https://orcid.org/0000-0002-4178-2729 http://orcid.org/0000-0002-0758-9976
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record