Show simple item record

dc.contributor.advisorBrown, Rafe M
dc.contributor.authorChan, Kin Onn
dc.date.accessioned2018-10-24T22:43:06Z
dc.date.available2018-10-24T22:43:06Z
dc.date.issued2017-12-31
dc.date.submitted2017
dc.identifier.otherhttp://dissertations.umi.com/ku:15670
dc.identifier.urihttp://hdl.handle.net/1808/27019
dc.description.abstractElucidating the tempo and mode of diversification is a major goal of evolutionary biology and represents a fundamental step towards understanding how biodiversity is generated and maintained. Achieving this goal is challenging due to the multidimensional complexity of macro- and micro-evolutionary forces that act across time, space and different phylogenetic levels. Furthermore, these evolutionary forces can involve both adaptive and neutral processes that form confounding interactions with landscape/environmental characteristics. Understanding how genes, geography, and ecology interact to generate, maintain and distribute biodiversity, therefore requires numerous datatypes and analytical resources that span different disciplines such as biogeography, population, and landscape genetics. The primary goal of this study is to provide a better understanding of the patterns and processes involved in the diversification of frogs from the family Ranidae through the use of genomic data and recent advances in analytical methods. Malaysia is one of the most biodiverse and environmentally threatened countries in the world. It is part of Sundaland, a biodiversity hotspot that has undergone dramatic climatic fluctuations in the past few million years. The dynamic geological history, coupled with the highly heterogeneous landscape of Malaysia, provides an ideal system to study the patterns and processes of diversification within a spatial and temporal context. Such studies are of particular importance in Malaysia as it is the country with the highest rate of deforestation in the world. Moreover, most biodiversity research in Malaysia revolves around systematic revisions and species descriptions with relatively few studies focused on understanding the evolutionary underpinnings that generate diversity. This study will fill a significant gap in the region’s biodiversity research, especially as it represents the first genomic study on Malaysian amphibians. Chapter 1 examines the broad biogeographic patterns of Ranid diversification at the family and generic level. Using the most comprehensive and robust time-calibrated phylogeny to date, we estimated the timing and patterns of major dispersal events to test the hypothesis that colonization of new geographic areas triggers a concomitant acceleration in diversification rates. Additionally, we determined whether the Eocene-Oligocene extinction event (EOEE) had a significant impact on the diversification of Ranids. Our results showed that the EOEE had no effect on diversification rates; most major dispersal events occurred over a relatively short period of time during the end of the Eocene, and the colonization of new geographic areas was not followed by increased net-diversification. On the contrary, diversification rate declined or did not shift following geographic expansion. Thus, the diversification history of Ranid frogs contradicts the prevailing expectation that amphibian net-diversification accelerated towards the present or increased following range expansion. Rather, our results demonstrate that despite their dynamic biogeographic history, the family Ranidae diversified at a relatively constant rate despite their present high diversity and circumglobal distribution. Chapter 2 compares the efficacy of commonly-used species delimitation methods (SDMs) and a population genomics approach based on genome-wide single nucleotide polymorphisms (SNPs) to assess lineage separation in the Malaysian Torrent Frog Complex currently recognized as a single species (Amolops larutensis). First, we used morphological, mitochondrial DNA and genome-wide SNPs to identify putative species boundaries by implementing non-coalescent and coalescent-based SDMs. We then tested the validity of putative boundaries by estimating spatiotemporal gene flow to assess the extent of genetic separation/cohesion among putative species. Our results show that SDMs were effective at delimiting divergent lineages in the absence of gene flow but overestimated species in the presence of marked population structure and gene flow. However, using a population genomics approach and the concept of species as separately evolving metapopulation lineages as the only necessary property of a species, we were able to objectively elucidate cryptic species boundaries in the presence of past and present gene flow. Chapter 3 builds on the findings of the previous chapter to determine the spatiotemporal factors that generated the genetic differentiation in Amolops. We tested the significance and relative contributions of (1) geographic distance (isolation-by-distance, IBD); (2) landscape/environmental variables including mountain ranges, river basins, forest cover, and habitat suitability (isolation-by-environment, IBE); and (3) historical events (isolation-by-colonization, IBC) towards genetic differentiation. Results showed that interspecies diversification was primarily driven by historical events (IBC); IBD was responsible for intraspecies population structure, and IBE did not play a significant role in the diversification of Amolops. Additionally, demographic analyses detected significant population bottlenecks, indicating that speciation was most likely due to founder effect speciation.
dc.format.extent177 pages
dc.language.isoen
dc.publisherUniversity of Kansas
dc.rightsCopyright held by the author.
dc.subjectBiology
dc.subjectBiodiversity
dc.subjectBiogeography
dc.subjectLandscape genetics
dc.subjectPhylogenetics
dc.subjectPopulation genetics
dc.subjectSystematics
dc.titleMountains and Migrations: Using Biogeography, Population and Landscape Genetics to Elucidate Patterns and Processes of Diversification in a Biodiversity Hotspot
dc.typeDissertation
dc.contributor.cmtememberPeterson, Town
dc.contributor.cmtememberMoyle, Robert G
dc.contributor.cmtememberMort, Mark
dc.contributor.cmtememberLi, Xingong
dc.thesis.degreeDisciplineEcology & Evolutionary Biology
dc.thesis.degreeLevelPh.D.
dc.identifier.orcidhttps://orcid.org/0000-0001-6270-0983
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record