Show simple item record

dc.contributor.authorWagner, Rebekah
dc.contributor.authorAgusto, Folashade B.
dc.date.accessioned2018-07-24T04:46:39Z
dc.date.available2018-07-24T04:46:39Z
dc.date.issued2018-02-07
dc.identifier.citationWagner, R., & Agusto, F. B. (2018). Transmission dynamics for Methicilin-resistant Staphalococous areus with injection drug user. BMC infectious diseases, 18(1), 69.en_US
dc.identifier.urihttp://hdl.handle.net/1808/26652
dc.descriptionA grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.en_US
dc.description.abstractBackground: Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen resistance to antibiotics including methicillin. The resistance first emerged in 1960 in a healthcare setting only after two years of using methicillin as a viable treatment for methicillin-susceptible Staphylococcus aureus. MRSA leads to infections in different parts of the body including the skin, bloodstream, lungs, or the urinary tract.

Methods: A deterministic model for methicillin-resistant Staphylococcus aureus (MRSA) with injection drug users is designed. The model incorporates transmission of MRSA among non-injection drug users and injection drug users (IDUs) who are both low-and high-risk users. A reduced MRSA transmission model with only non-IDUs is fitted to a 2008-2013 MRSA data from the Agency for Healthcare and Research and Quality (AHRQ). The parameter estimates obtained are projected onto the parameters for the low-and high-risk IDUs subgroups using risk factors obtained by constructing a risk assessment ethogram. Sensitivity analysis is carried out to determine parameters with the greatest impact on the reproduction number using the reduced non-IDUs model. Change in risk associated behaviors was studied using the full MRSA transmission model via the increase in risky behaviors and enrollment into rehabilitation programs or clean needle exchange programs. Three control effectiveness levels determined from the sensitivity analysis were used to study control of disease translation within the subgroups.

Results: The sensitivity analysis indicates that the transmission probability and recovery rates within the subgroup have the highest impact on the reproduction number of the reduced non-IDU model. Change in risk associated behaviors from non-IDUs to low-and high-risk IDUs lead to more MRSA cases among the subgroups. However, when more IDUs enroll into rehabilitation programs or clean needle exchange programs, there was a reduction in the number of MRSA cases in the community. Furthermore, MRSA burden within the subgroups can effectively be curtailed in the community by implementing moderate- and high-effectiveness control strategies.

Conclusions: MRSA burden can be curtailed among and within non-injection drug users and both low-and high-risk injection drug users by encouraging positive change in behaviors and by moderate- and high-effectiveness control strategies that effectively targets the transmission probability and recovery rates within the subgroups in the community.
en_US
dc.publisherBioMed Centralen_US
dc.rights© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.subjectMethicillin-resistanten_US
dc.subjectInjection drug usersen_US
dc.subjectSensitivity analysisen_US
dc.subjectRisk factorsen_US
dc.subjectControl strategiesen_US
dc.titleTransmission dynamics for Methicilin-resistant Staphalococous areus with injection drug useren_US
dc.typeArticleen_US
kusw.kuauthorAgusto, Folashade B.
kusw.kudepartmentEcology and Evolutionary Biologyen_US
dc.identifier.doi10.1186/s12879-018-2973-4en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Except where otherwise noted, this item's license is described as: © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.