Comparative oncology approach to drug repurposing in osteosarcoma

View/ Open
Issue Date
2018-03-26Author
Parrales, Alejandro
McDonald, Peter R.
Ottomeyer, Megan
Roy, Anuradha
Shoenen, Frank J.
Broward, Melinda
Bruns, Tyce
Thamm, Douglas H.
Weir, Scott J.
Neville, Kathleen A.
Iwakuma, Tomoo
Fulbright, Joy M.
Publisher
Public Library of Science
Type
Article
Article Version
Scholarly/refereed, publisher version
Rights
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Metadata
Show full item recordAbstract
BACKGROUND: Osteosarcoma is an orphan disease for which little improvement in survival has been made since the late 1980s. New drug discovery for orphan diseases is limited by the cost and time it takes to develop new drugs. Repurposing already approved FDA-drugs can help overcome this limitation. Another limitation of cancer drug discovery is the lack of preclinical models that accurately recapitulate what occurs in humans. For OS using dogs as a model can minimize this limitation as OS in canines develops spontaneously, is locally invasive and metastasizes to the lungs as it does in humans.
METHODS: In our present work we used high-throughput screens to identify drugs from a library of 2,286 FDA-approved drugs that demonstrated selective growth inhibition against both human and canine OS cell lines. The identified lead compound was then tested for synergy with 7 other drugs that have demonstrated activity against OS. These results were confirmed with in vitro assays and an in vivo murine model of OS.
RESULTS: We identified 13 drugs that demonstrated selective growth inhibition against both human and canine OS cell lines. Auranofin was selected for further in vitro combination drug screens. Auranofin showed synergistic effects with vorinostat and rapamycin on OS viability and apoptosis induction. Auranofin demonstrated single-agent growth inhibition in both human and canine OS xenografts, and cooperative growth inhibition was observed in combination with rapamycin or vorinostat. There was a significant decrease in Ki67-positive cells and an increase in cleaved caspase-3 levels in tumor tissues treated with a combination of auranofin and vorinostat or rapamycin.
CONCLUSIONS: Auranofin, alone or in combination with rapamycin or vorinostat, may be useful new treatment strategies for OS. Future studies may evaluate the efficacy of auranofin in dogs with OS as a prelude to human clinical evaluation.
Collections
Citation
Parrales A, McDonald P, Ottomeyer M, Roy A, Shoenen FJ, Broward M, et al. (2018) Comparative oncology approach to drug repurposing in osteosarcoma. PLoS ONE 13(3): e0194224. https://doi.org/10.1371/journal.pone.0194224
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.
Except where otherwise noted, this item's license is described as: This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.