Synthesis and Characterization of Amide and Urea Receptor Systems for Anion and Metal Complexation and the Synthesis and Use of Block Copolymers for Optoelectronic Crystal Growth
Issue Date
2017-08-31Author
Lohrman, Jessica
Publisher
University of Kansas
Format
253 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Chemistry
Rights
Copyright held by the author.
Metadata
Show full item recordAbstract
The content of this dissertation is divided into two parts, as a result of projects from two research groups during the course of my research at the University of Kansas. The first five chapters detail my work with Dr. Bowman-James which has focused on host-guest chemistry ranging from ligand synthesis to anion and metal binding. I joined the Bowman-James group after my fourth year at KU and have been a member from 2015 to 2017. Ditopic pyrazine pincers or “duplex” pincers were synthesized and investigated for both their anion binding and their metal binding merit. Chapter 2 will investigate duplex hosts as anion binding hosts, the duplex receptors were synthesized with R group functionalizations that permit a range of solubilities in various solvents. Their anion binding capabilities will be discussed in comparison to their monotopic counterparts. The duplex pincers were also studied for transition metal binding capabilities which will be detailed in Chapter 5. Palladium complexes were made and characterized with the duplex pincers and some of the interesting features of these compounds will be discussed. Aside from the duplex hosts, urea macrocyclic receptors were also synthesized and characterized for their anion host capabilities, which will be discussed in Chapter 3. Variations in macrocycle size and urea components were explored and binding merit was determined on these receptor complexes. The final two chapter of this dissertation highlight one of my projects in the Ren group from my first year of graduate school in 2011 up through my fourth year in 2015. I joined the Bowman-James group after Dr. Ren moved to Temple University. Chapter 6 will include a review on the field of organic photovoltaic and optoelectronic devices. Chapter 7 will detail my work synthesizing block copolymers for use as compatibilizing agents for P3HT and C60 interfaces. These organic photovoltaic devices exhibited an interesting magnetoconductive behavior that can be observed at room temperature in these charge transfer systems.
Collections
- Chemistry Dissertations and Theses [335]
- Dissertations [4454]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.