KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Security and Privacy in the Internet of Things

    Thumbnail
    View/Open
    Yang_ku_0099D_15544_DATA_1.pdf (5.079Mb)
    Issue Date
    2017-08-31
    Author
    Yang, Lei
    Publisher
    University of Kansas
    Format
    181 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The Internet of Things (IoT) is an emerging paradigm that seamlessly integrates electronic devices with sensing and computing capability into the Internet to achieve intelligent processing and optimized controlling. In a connected world built through IoT, where interconnected devices are extending to every facet of our lives, including our homes, offices, utility infrastructures and even our bodies, we are able to do things in a way that we never before imagined. However, as IoT redefines the possibilities in environment, society and economy, creating tremendous benefits, significant security and privacy concerns arise such as personal information confidentiality, and secure communication and computation. Theoretically, when everything is connected, everything is at risk. The ubiquity of connected things gives adversaries more attack vectors and more possibilities, and thus more catastrophic consequences by cybercrimes. Therefore, it is very critical to move fast to address these rising security and privacy concerns in IoT systems before severe disasters happen. In this dissertation, we mainly address the challenges in two domains: (1) how to protect IoT devices against cyberattacks; (2) how to protect sensitive data during storage, dissemination and utilization for IoT applications. In the first part, we present how to leverage anonymous communication techniques, particularly Tor, to protect the security of IoT devices. We first propose two schemes to enhance the security of smart home by integrating Tor hidden services into IoT gateway for users with performance preference. Then, we propose a multipath-routing based architecture for Tor hidden services to enhance its resistance against traffic analysis attacks, and thus improving the protection for smart home users who desire very strong security but care less about performance. In the second part of this dissertation, we explore the solutions to protect the data for IoT applications. First, we present a reliable, searchable and privacy-preserving e-healthcare system, which takes advantage of emerging cloud storage and IoT infrastructure and enables healthcare service providers (HSPs) to realize remote patient monitoring in a secure and regulatory compliant manner. Then, we turn our attention to the data analysis in IoT applications, which is one of the core components of IoT applications. We propose a cloud-assisted, privacy-preserving machine learning classification scheme over encrypted data for IoT devices. Our scheme is based on a three-party model coupled with a two-stage decryption Paillier-based cryptosystem, which allows a cloud server to interact with machine learning service providers (MLSPs) and conduct computation intensive classification on behalf of the resourced-constrained IoT devices in a privacy-preserving manner. Finally, we explore the problem of privacy-preserving targeted broadcast in IoT, and propose two multi-cloud-based outsourced-ABE (attribute-based encryption) schemes. They enable the receivers to partially outsource the computationally expensive decryption operations to the clouds, while preventing attributes from being disclosed.
    URI
    http://hdl.handle.net/1808/25932
    Collections
    • Dissertations [3958]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps