KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multichannel Sense and Avoid Radar for Small UAVs

    Thumbnail
    View/Open
    Shi_ku_0099D_14743_DATA_1.pdf (8.660Mb)
    Issue Date
    2016-08-31
    Author
    Shi, Lei
    Publisher
    University of Kansas
    Format
    155 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    This dissertation investigates the feasibility of creating a multichannel sense and avoid radar system for small fixed-wing UAVs (also known as sUAS or drones). The target sUAS is a 40% Yak-54 remote controlled aircraft with a typical payload of 10 lbs. Small UAS’s such as these are increasing in popularity for both personal, commercial, and government use including precision agriculture, infrastructure monitoring, and assisting first response. However, due to their lack of situation awareness, the FAA has placed strict regulations on their operation limiting their use on both the civil and government sides across the U.S. This miniature radar system is intended to provide these sUAS with target detection, tracking, and 3-D location and velocity information on potential non-cooperative hazards, primarily focusing on general aviation (GA) aircraft. The resulting FMCW miniature radar system has a size weight and power (SWaP) that is suitable for installing onboard the 40% Yak-54 UAS with the exception of replacing a TX power amplifier and has demonstrated, through measuring moving cars, that it is capable of target detection using a 2-D FFT processing algorithm and a constant false alarm rate (CFAR) detector. Tracking of the target was performed using the range-Doppler relationship of targets in the resulting radar image. The target’s angular information in the form of target echo angle of arrival (AoA, needed for location estimation) was estimated using interferometry. While the angular estimations were in the right direction, their uncertainties resulting in significant fluctuations in estimated target XYZ position and XYZ velocities. It was observed that in the near term, averaging the AoA (which changes relatively slowly for steady flight) is a way to reduce this uncertainly. In the future, the radar system needs to be upgraded so that it can provide the ideal 10-Hz update rate which will also provide sufficient data for more complex target AoA detection algorithms.
    URI
    http://hdl.handle.net/1808/25766
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps