KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Covert Communications in the RF Band of Primary Wireless Networks

    Thumbnail
    View/Open
    Shabsigh_ku_0099D_15074_DATA_1.pdf (880.7Kb)
    Issue Date
    2017-05-31
    Author
    Shabsigh, Ghaith
    Publisher
    University of Kansas
    Format
    81 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Covert systems are designed to operate at a low probability of detection (LPD) in order to provide system protection at the physical layer level. The classical approach to covert communications aims at hiding the covert signal in noise by lowering the power spectral density of the signal to a level that makes it indistinguishable from that of the noise. However, the increasing demand for modern covert systems that can provide better protection against intercept receivers (IRs) and provides higher data rates has shifted the focus to the design of Ad-Hoc covert networks (ACNs) that can hide their transmission in the RF spectrum of primary networks (PNs), like mobile networks. The early work on exploiting the RF band of other wireless systems has been promising; however, the difficulties in modeling such environments, analyzing the impact on/from the primary network, and deriving closed form expressions for the performance of the covert network have limited the work on this crucial subject. In this work, we provide the first comprehensive analyses of a covert network that exploits the RF band of an OFDM-based primary network to achieve covertness. A spectrum access algorithm is presented which would allow the ACN to transmit in the RF spectrum of the PN with minimum interference. Next, we use stochastic geometry to model both the OFDM-based PN as well as the ACN. Using stochastic geometry would also allow us to derive closed-form expressions and provide a comprehensive analysis for two metrics, namely an aggregate metric and a ratio metric. These two metrics quantify the covertness and performance of the covert network from the perspective of the IR and the ACN, respectively. The two metrics are used to determine the detectability limits of an ACN by an IR. The two metrics along with the proposed spectrum access algorithm will be used to provide a comprehensive discussion on how to design the ACN for a target covertness level, and analyze the effect of the PN parameters on the ACN expected performance. This work also addresses the question of trade-off between the ACN covertness and its achievable throughput. The overall discussion and results in this research work illustrate the strong potential for using man-made transmissions as a mask for covert communications. In addition, some of our results can be directly used for other applications such as device-to-device (D2D) and vehicle-to-everything (V2X) communications.
    URI
    http://hdl.handle.net/1808/24141
    Collections
    • Engineering Dissertations and Theses [1055]
    • Dissertations [4321]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps