KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical Solutions of Boundary Value Problems for Incompressible Internal Polar Viscous Fluids

    Thumbnail
    View/Open
    Khadka_ku_0099M_14933_DATA_1.pdf (2.075Mb)
    Issue Date
    2016-08-31
    Author
    Khadka, Dipin
    Publisher
    University of Kansas
    Format
    94 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Mechanical Engineering
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The work presented here considers conservation and balance laws and constitutive theories for internal polar non-classical isotropic, homogeneous incompressible thermofluids presented by Surana et.al to present numerical studies and comparison with the results obtained using classical thermodynamic frame and standard constitutive theories. The internal polar continuum theories are based on the fact that if the velocity gradient tensor is a fundamental measure of deformation physics in fluids then the thermodynamic framework for such fluids must incorporate the velocity gradient tensor in its entirety. Polar decomposition of the velocity gradient tensor into stretch rates and the rotation rates shows that only the stretch rates are incorporated in the currently used thermodynamic framework and the rotation rates are completely neglected. If the velocity gradient tensor varies from a material point to the neighboring material points, then so do the rates of rotations which, when resisted by the fluid result in conjugate moment tensor. Rates of rotations and conjugate moment tensor can result in additional resistance to fluid motion and additional dissipation i.e. entropy production. Due to the fact that the internal polar non-classical continuum theory incorporates internal rotations and conjugate moment tensor, the theory is called internal polar non-classical continuum theory. The thermodynamic framework for internal polar thermofluids has been presented by Surana et.al. The constitutive theory for internal polar incompressible thermofluids has also been presented by Surana et.al. These are utilized in this work to present numerical studies for model problems. Boundary value problems consisting of fully developed flow between parallel plates, square and rectangular lid driven cavities and asymmetric sudden expansion with three different expansion ratios are used as model problems. Numerical solutions are computed using least squares finite element processes based on residual functional in which p-version hierarchical local approximations are considered in scalar product spaces that permit higher order global differentiability local approximations. Nonlinear algebraic equations resulting from the finite element formulation are solved using Newton’s linear method with line search. Numerical solutions obtained from internal polar mathematical models are compared with those obtained using classical continuum theory.
    URI
    http://hdl.handle.net/1808/22350
    Collections
    • Engineering Dissertations and Theses [705]
    • Theses [3407]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps