KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Aerodynamic Noise Generated By Wind Turbine Blades

    Thumbnail
    View/Open
    Giridhar_ku_0099M_14610_DATA_1.pdf (4.281Mb)
    Issue Date
    2016-05-31
    Author
    Giridhar, Rohith
    Publisher
    University of Kansas
    Format
    100 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Aerospace Engineering
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The preliminary step in the computational study of mitigating the aerodynamic noise generated by wind turbine blades involves accurate prediction of aerodynamic noise generated by a wind turbine rotor which can be used a basis for comparison. The NREL Phase VI HAWT rotor has been chosen to perform this study. This is achieved by first predicting the three dimensional flow field around the rotor through CFD analysis using SST k-ω turbulence model for wind speeds of 7m/s, 10m/s, 13m/s and 15m/s. CFD analysis has been performed using the rotating reference frame method at steady state conditions which resulted in predicting the flow field accurately with less computational time. The rotational periodic boundary condition with 1800 symmetry has been used with which one blade has been simulated instead of two. This reduced the mesh size and thus computational costs to perform the CFD analysis. To validate the prediction of flow field obtained through CFD analysis, performance characteristics and aerodynamic characteristics such as torque generated and trends of pressure coefficients at different span locations are validated against the time averaged experimental results and other results pertaining to the same published in previous computational study. The results obtained through CFD analysis show good agreement with both experimental results and previous computational results. Based on the trends of pressure coefficients predicted for different wind speeds we see that it is most accurate at a wind speed of 7m/s and this accuracy gradually decreases with increase in wind speed. Once the flow field was accurately predicted, this was used to predict both the location and magnitude of aerodynamic noise generated by the blade using the Curle broadband noise source model. Aeroacoustic analysis indicates that major noise sources are located near the tip of the blade and it gradually decreases as we move towards its root. This trend is observed at all four wind speed conditions. It is also observed that with increase in wind speeds, there is increase in the intensity of noise generated by the blades and thus increase in Sound Power Level across the blade.
    URI
    http://hdl.handle.net/1808/21976
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps