Show simple item record

dc.contributor.authorLi, Xiangru
dc.contributor.authorWang, Guanghui
dc.contributor.authorWu, Q. M. Jonathan
dc.date.accessioned2016-11-15T18:53:18Z
dc.date.available2016-11-15T18:53:18Z
dc.date.issued2015
dc.identifier.citationCopyright © 2015 Xiangru Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.identifier.urihttp://hdl.handle.net/1808/21963
dc.description.abstractThe correspondence function (CF) is a concept recently introduced to reject the mismatches from given putative correspondences. The fundamental idea of the CF is that the relationship of some corresponding points between two images to be registered can be described by a pair of vector-valued functions, estimated by a nonparametric regression method with more flexibility than the normal parametric model, for example, homography matrix, similarity transformation, and projective transformations. Mismatches are rejected by checking their consistency with the CF. This paper proposes a visual scheme to investigate the fundamental principles of the CF and studies its characteristics by experimentally comparing it with the widely used parametric model epipolar geometry (EG). It is shown that the CF describes the mapping from the points in one image to their corresponding points in another image, which enables a direct estimation of the positions of the corresponding points. In contrast, the EG acts by reducing the search space for corresponding points from a two-dimensional space to a line, which is a problem in one-dimensional space. As a result, the undetected mismatches of the CF are usually near the correct corresponding points, but many of the undetected mismatches of the EG are far from the correct point.en_US
dc.publisherHindawi Publishing Corporationen_US
dc.rightsCopyright © 2015 Xiangru Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleResearch on the Fundamental Principles and Characteristics of Correspondence Functionen_US
dc.typeArticleen_US
kusw.kuauthorWang, Guanghui
kusw.kudepartmentElectrical Engineering and Computer Scienceen_US
dc.identifier.doi10.1155/2015/721842en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright © 2015 Xiangru Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as: Copyright © 2015 Xiangru Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.