KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Task Relationship Modeling in Lifelong Multitask Learning

    Thumbnail
    View/Open
    Mishra_ku_0099D_14257_DATA_1.pdf (1.099Mb)
    Issue Date
    2015-08-31
    Author
    Mishra, Meenakshi
    Publisher
    University of Kansas
    Format
    165 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Multitask Learning is a learning framework which explores the concept of sharing training information among multiple related tasks to improve the generalization error of each task. The benefits of multitask learning have been shown both empirically and theoretically. There are a number of fields that benefit from multitask learning such as toxicology, image annotation, compressive sensing etc. However, majority of multitask learning algorithms make a very important key assumption that all the tasks are related to each other in a similar fashion in multitask learning. The users often do not have the knowledge of which tasks are related and train all tasks together. This results in sharing of training information even among the unrelated tasks. Training unrelated tasks together can cause a negative transfer and deteriorate the performance of multitask learning. For example, consider the case of predicting in vivo toxicity of chemicals at various endpoints from the chemical structure. Toxicity at all the endpoints are not related. Since, biological networks are highly complex, it is also not possible to predetermine which endpoints are related. Training all the endpoints together may cause a negative effect on the overall performance. Therefore, it is important to establish the task relationship models in multitask learning. Multitask learning with task relationship modeling may be explored in three different settings, namely, static learning, online fixed task learning and most recent lifelong learning. The multitask learning algorithms in static setting have been present for more than a decade and there is a lot of literature in this field. However, utilization of task relationships in multitask learning framework has been studied in detail for past several years only. The literature which uses feature selection with task relationship modeling is even further limited. For the cases of online and lifelong learning, task relationship modeling becomes a challenge. In online learning, the knowledge of all the tasks is present before starting the training of the algorithms, and the samples arrive in online fashion. However, in case of lifelong multitask learning, the tasks also arrive in an online fashion. Therefore, modeling the task relationship is even a further challenge in lifelong multitask learning framework as compared to online multitask learning. The main contribution of this thesis is to propose a framework for modeling task relationships in lifelong multitask learning. The initial algorithms are preliminary studies which focus on static setting and learn the clusters of related tasks with feature selection. These algorithms enforce that all the tasks which are related select a common set of features. The later part of the thesis shifts gear to lifelong multitask learning setting. Here, we propose learning functions to represent the relationship between tasks. Learning functions is faster and computationally less expensive as opposed to the traditional manner of learning fixed sized matrices for depicting the task relationship models.
    URI
    http://hdl.handle.net/1808/21688
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps