KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design, Synthesis and Biological Evaluation of Ring-constrained and Biphenyl Derivatives as Hsp90 C-terminal Inhibitors

    Thumbnail
    View/Open
    Garg_ku_0099M_13323_DATA_1.pdf (5.753Mb)
    Issue Date
    2014-05-31
    Author
    Garg, Gaurav
    Publisher
    University of Kansas
    Format
    165 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Medicinal Chemistry
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that plays a pivotal role in protein homeostasis in responses to cellular stress. Hsp90 regulates the conformational maturation, activation, and integrity of a wide array of client proteins, including oncogenic proteins (Her2, Raf1, Akt, CDK4 etc.) associated with all six hallmarks of cancer. Consequently, Hsp90 inhibition offers a unique opportunity for the simultaneous degradation of multiple anti-cancer targets and hence, for the development of cancer chemotherapeutics. Hsp90 exists as a homodimer with each monomer consisting of a druggable domain; the N-terminal domain, the middle domain, and the C-terminus. The majority of research has focused on development of Hsp90 N-terminal inhibitors. In fact, all Hsp90 inhibitors in clinical trials belong to this class. One of the major drawbacks associated with N-terminal inhibitors is the concomitant induction of the pro-survival response, which results in an upregulation of Hsp's and affects the dosing schedule. As a result, alternative strategies are sought for the development of future Hsp90 inhibitors. Over the last decade, Hsp90 C-terminal inhibitors have emerged an attractive alternative for Hsp90 modulation. These inhibitors exhibit similar inhibitory activity to N-terminal inhibitors, but do not induce the pro-survival response and could potentially circumvent the clinical limitations imposed on N-terminal Inhibitors. Presented herein are the design, synthesis and biological evaluation of ring-constrained novobiocin analogues that provide new insights into the Hsp90 C-terminal binding pocket and SAR's that can be used for future analog development. In addition, identification of a novel class of Hsp90 inhibitors is discussed. These new agents provide a platform upon which future Hsp90 inhibitors can be built upon.
    URI
    http://hdl.handle.net/1808/21633
    Collections
    • Medicinal Chemistry Dissertations and Theses [58]
    • Theses [3228]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps