KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simplicial and Cellular Trees

    Thumbnail
    View/Open
    Martin_2016.pdf (294.5Kb)
    Issue Date
    2016-04-16
    Author
    Duval, Art M.
    Klivans, Caroline J.
    Martin, Jeremy L.
    Publisher
    Springer International Publishing
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Rights
    © Springer International Publishing Switzerland 2016
    Metadata
    Show full item record
    Abstract
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai, and Adin, and more recently by numerous authors, the fundamental topological properties of a tree — namely acyclicity and connectedness — can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley’s formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.
    URI
    http://hdl.handle.net/1808/21425
    DOI
    https://doi.org/10.1007/978-3-319-24298-9_28
    Collections
    • Mathematics Scholarly Works [280]
    Citation
    Art M. Duval, Caroline J. Klivans and Jeremy L. Martin. Simplicial and Cellular Trees. Recent Trends in Combinatorics (A. Beveridge, J. Griggs, L. Hogben, G. Musiker and P. Tetali, eds.), 713-752, IMA Vol. Math. Appl. 159, Springer, 2016.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps