KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Geology
    • Geology Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Geology
    • Geology Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quadrature conductivity: A quantitative indicator of bacterial abundance in porous media

    Thumbnail
    View/Open
    Zhang_2014.pdf (1.302Mb)
    Issue Date
    2014-11
    Author
    Zhang, Chi
    Revil, André
    Fujita, Yoshiko
    Munakata-Marr, Junko
    Redden, George
    Publisher
    Society of Exploration Geophysicists
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Rights
    © 2014 Society of Exploration Geophysicists
    Metadata
    Show full item record
    Abstract
    The abundance and growth stages of bacteria in subsurface porous media affect the concentrations and distributions of charged species within the solid-solution interfaces. Therefore, spectral induced polarization (SIP) measurements can be used to monitor changes in bacterial biomass and growth stage. Our goal was to gain a better understanding of the SIP response of bacteria present in a porous material. Bacterial cell surfaces possess an electric double layer and therefore become polarized in an electric field. We performed SIP measurements over the frequency range of 0.1–1 kHz on cell suspensions alone and cell suspensions mixed with sand at four pore water conductivities. We used Zymomonas mobilis at four different cell densities (including the background). The quadrature conductivity spectra exhibited two peaks, one around 0.05–0.10 Hz and the other around 1–10 Hz. Because SIP measurements on bacterial suspensions are typically made at frequencies greater than 1 Hz, these peaks have not been previously reported. In the bacterial suspensions in growth medium, the quadrature conductivity at peak I was linearly proportional to the density of the bacteria. For the case of the suspensions mixed with sands, we observed that peak II presented a smaller increase in the quadrature conductivity with the cell density. A comparison of the experiments with and without sand grains illustrated the effect of the porous medium on the overall quadrature conductivity response (decrease in the amplitude and shift of the peaks to the lower frequencies). Our results indicate that for a given porous medium, time-lapse SIP has potential for monitoring changes in bacterial abundance within porous media.
    URI
    http://hdl.handle.net/1808/21344
    DOI
    https://doi.org/10.1190/geo2014-0107.1
    Collections
    • Geology Scholarly Works [245]
    Citation
    Zhang, C., Revil, A., Fujita, Y., Munakata-Marr, J., & Redden, G. (2014). Quadrature conductivity: A quantitative indicator of bacterial abundance in porous media. Geophysics, 79(6), D363-D375.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps