Show simple item record

dc.contributor.authorMosconi, Matthew W.
dc.date.accessioned2016-07-28T18:57:14Z
dc.date.available2016-07-28T18:57:14Z
dc.date.issued2013-05-21
dc.identifier.citationMosconi MW, Luna B, Kay-Stacey M, Nowinski CV, Rubin LH, Scudder C, et al. (2013) Saccade Adaptation Abnormalities Implicate Dysfunction of Cerebellar-Dependent Learning Mechanisms in Autism Spectrum Disorders (ASD). PLoS ONE 8(5): e63709. doi:10.1371/journal.pone.0063709en_US
dc.identifier.urihttp://hdl.handle.net/1808/21218
dc.description.abstractThe cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms. Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic dysmorphology of this brain region in ASD.en_US
dc.publisherPublic Library of Scienceen_US
dc.rights© 2013 Mosconi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSaccade Adaptation Abnormalities Implicate Dysfunction of Cerebellar-Dependent Learning Mechanisms in Autism Spectrum Disorders (ASD)en_US
dc.typeArticleen_US
kusw.kuauthorMosconi, Matthew W.
kusw.kudepartmentApplied Behavioral Scienceen_US
dc.identifier.doi10.1371/journal.pone.0063709en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2013 Mosconi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Except where otherwise noted, this item's license is described as: © 2013 Mosconi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.