KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Physics & Astronomy
    • Physics & Astronomy Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Physics & Astronomy
    • Physics & Astronomy Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Trapping of Intermediates with Substrate Analog HBOCaA in the Polymerizations Catalyzer by Class III Polyhydroxybutyrate (PHB) Synthase from Allochromatium Vinosum

    Thumbnail
    View/Open
    Fischer_2015.pdf (2.101Mb)
    Issue Date
    2015-05-15
    Author
    Chen, Chao
    Cao, Ruikai
    Shrestha, Ruben
    Ward, Christina
    Katz, Benjamin B.
    Fischer, Christopher J.
    Tomich, John M.
    Li, Ping
    Publisher
    American Chemical Society
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Metadata
    Show full item record
    Abstract
    Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2–6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 hr−1. This extremely slow rate is due to thermodynamically unfavorable steps that involve formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2–3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [3H]-sT-PhaECAv and HBOCoA yielded [3H]-sTet-O-CoA at a rate constant faster than 17.4 s−1, which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s−1). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model.
    URI
    http://hdl.handle.net/1808/21112
    DOI
    https://doi.org/10.1021/cb5009958
    Collections
    • Physics & Astronomy Scholarly Works [1711]
    Citation
    Chen, Chao et al. “Trapping of Intermediates with Substrate Analog HBOCoA in the Polymerizations Catalyzed by Class III Polyhydroxybutyrate (PHB) Synthase from Allochromatium Vinosum.” ACS chemical biology 10.5 (2015): 1330–1339. PMC. Web. 15 July 2016.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps