KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navigation for UAVs using Signals of Opportunity

    Thumbnail
    View/Open
    AlAziz_ku_0099D_14366_DATA_1.pdf (10.97Mb)
    Issue Date
    2015-12-31
    Author
    Al Aziz, Masud
    Publisher
    University of Kansas
    Format
    137 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The reliance of Unmanned Aerial Vehicles (UAVs) on Global Navigation Satellite System (GNSS) for autonomous operation represents a significant vulnerability to their reliable and secure operation due to signal interference, both incidental (e.g. terrain shadowing, ionospheric scintillation) and malicious (e.g. jamming, spoofing). An accurate and reliable alternative UAV navigation system is proposed that exploits Signals of Opportunity (SOP) thus offering superior signal strength and spatial diversity compared to satellite signals. Given prior knowledge of the transmitter's position and signal characteristics, the proposed technique utilizes triangulation to estimate the receiver's position. Dual antenna interferometry provides the received signals' Angle of Arrival (AoA) required for triangulation. Reliance on precise knowledge of the antenna system's orientation is removed by combining AoAs from different transmitters to obtain a differential Angles of Arrival (dAoAs). Analysis, simulation, and ground-based experimental techniques are used to characterize system performance; a path to miniaturized system integration is also presented. Results from these ground-based experiments show that when the received signal-to-noise ratio (SNR) is above about 45 dB (typically in within 30 km of the transmitters), the proposed method estimates the receiver's position uncertainty range from less than 20 m to about 60 m with an update rate of 10 Hz.
    URI
    http://hdl.handle.net/1808/20929
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps