KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Geology
    • Geology Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Geology
    • Geology Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Taxa Isotopic Investigation of Paleohydrology In the Lower Cretaceous Cedar Mountain Formation, Eastern Utah, U.S.A.: Deciphering Effects Of the Nevadaplano Plateau On Regional Climate

    Thumbnail
    View/Open
    Suarez_multi-taxa2014.pdf (2.031Mb)
    Issue Date
    2014
    Author
    Suarez, Celina Angelica
    Gonzalez, Luis A.
    Ludvigson, Gregory A.
    Kirkland, James I.
    Cifelli, Richard L.
    Kohn, Matthew J.
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    We investigate the regional climatic effects of the formation of the “Nevadaplano” plateau during the Sevier Orogeny in an overall warming world. Paleohydrology was reconstructed from 590 individual measurements of phosphate O isotopes in continental faunas of the Lower Cretaceous Cedar Mountain Formation, Utah, U.S.A. Semi-aquatic (turtles, crocodiles) and terrestrial (dinosaurs) taxa are compared to coeval pedogenic carbonates to interpret changing water sources over time. Samples were grouped into four stratigraphic faunas (lower Yellow Cat, upper Yellow Cat, Ruby Ranch, and Mussentuchit members). Resulting isotopic values were converted to δ18Ow values using established δ18Op–δ18Ow and δ18Oc–δ18Ow relationships. At a formation scale, turtles (δ18Op  =  14.1 to 15.7‰ V-SMOW) and crocodiles (δ18Op  =  15.0 to 19.2‰) document water compositions of −8.1 to −6.1‰ and −7.7 to −4.2‰, respectively, within the zonal range for formation-scale meteoric water at 34° N paleolatitude (−7.1 to −4.8‰) established by pedogenic carbonates (δ18Oc  =  22.0 to 23.5‰ V-SMOW). These data suggest that, like soil carbonates, turtle and crocodile phosphate isotopes can be used as proxies for meteoric water isotopic composition. Dinosaur δ18Op (sauropods: 19.7 to 21.9‰, ornithischians: 16.6 to 21.7‰, small theropods: 16.9 to 18.2‰, and large allosauroids: 19.1 to 20.3‰) values generally exceed those of semi-aquatic taxa. Using mass-balance equations for modern terrestrial animals adjusted for size and inferred dinosaur physiology, ingested water is calculated for the above dinosaur groups. On a member scale, when meteoric-water values are compared with calculated dinosaur drinking water, values are equal to or lighter than meteoric water for most herbivorous groups (as low as −15.5‰ for ornithischians) and equal to or heavier than meteoric water for most carnivorous groups (as high as −2.0‰ for allosauroids). Changes in δ18Ometeoric water, δ18Odinosaur ingested water, faunal assemblages, and sedimentology, from member to member, correlate to thrusting events of the Sevier Orogeny. High elevations in the orogeny attenuated the influences of Pacific moisture, causing rainshadow-induced aridity on the leeward foreland basin during upper Yellow Cat time, and hosted seasonal snow accumulation by the end of Ruby Ranch time, as suggested by 18O-enriched water (e.g., up to an average of −2.0‰ from an allosauroid tooth) and extremely 18O-depleted water (e.g., −15.5‰ for ornithischians) in the Ruby Ranch Member. By Mussentuchit-time, delivery of the Western Interior Seaway–dominated moisture to the region, despite continued rise of the Sevier Mountains.
    Description
    This is the published version. Copyright 2014 Society for Sedimentary Geology.
    URI
    http://hdl.handle.net/1808/19198
    DOI
    https://doi.org/10.2110/jsr.2014.76
    Collections
    • Geology Scholarly Works [218]
    Citation
    Suarez, C. A., L. A. Gonzalez, G. A. Ludvigson, J. I. Kirkland, R. L. Cifelli, and M. J. Kohn. "Multi-Taxa Isotopic Investigation of Paleohydrology In the Lower Cretaceous Cedar Mountain Formation, Eastern Utah, U.S.A.: Deciphering Effects Of the Nevadaplano Plateau On Regional Climate." Journal of Sedimentary Research 84.11 (2014): 975-87. http://dx.doi.org/10.2110/jsr.2014.76

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps