KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanosynthesis of Iron Based Material for Green Energy

    Thumbnail
    View/Open
    Kirkeminde_ku_0099D_13913_DATA_1.pdf (48.92Mb)
    Permission Files from RightsLink (1.058Mb)
    Issue Date
    2015-05-31
    Author
    Kirkeminde, Alec
    Publisher
    University of Kansas
    Format
    139 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Chemistry
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    In this work, nanosynthesis of multiple iron-based materials are explored to further their use in green renewable-energy applications. First, the nanosynthesis of the abundant, non-toxic semi-conductor Iron Disulfide (Iron Pyrite, Fool's Gold, FeS2) is investigated. Within these studies, it became possible to tune the shape of the FeS2 nanoparticles easily by modifying injection temperatures and iron precursors. From here, the growth mechanisms of the different shapes were elucidated by examining different time points within the synthesis. It was discovered that the FeS2 did not grow by Ostwald Ripening, but instead by Oriented Attachment. Knowing this, it was possible to not only further the shapes of FeS2 nanoparticles, but also manipulate the size and crystallinity. Focus was then shifted to creating larger micron sized FeS2 crystals. Larger crystals where achieved by a unique FeS nanowire precursor followed by sulfurization. The dominant crystal surface of these crystals could be regulated simply by the time and temperature of the sulfurization. Second, synthetic control of magnetic nanoparticles was examined. A novel synthesis of Iron Palladium (FePd) made possible by interdiffusion of iron into palladium nanocores was identified. Furthermore, a shell of Iron oxide (Fe2O3) could facilely be grown on the FePd nanoparticles, generating a FePd/Fe2O3 core/shell nanoparticle. These FePd/Fe2O3 core/shell particles provided an excellent foundation to create an L10- FePd/α-Fe exchange-coupled nanocomposite that exhibited improved magnetic properties compared to its single phase FePd counterpart. However, the stabilizing ligand used within this FePd synthesis doped into the final nanoparticles, degraded the magnetic properties. iii To overcome the dopant ligand problem, a novel nanoalloy synthetic strategy of Metal Redox was developed. The Metal Redox strategy utilized the inherent reducing power of zero-valent metal sources to create a vast sampling of metal nanoalloys without the need of ligands or excess reducing agents. Stoichiometry of these nanoalloys could be readily adjusted by temperature and explained by simple chemical equilibrium concepts. The Metal Redox methodology was then expanded to shape control and tri-metallic alloys. Finally, the unique MnBi nanoalloy system was created using Metal Redox, making it the first ever reported solution processed formation of this material.
    URI
    http://hdl.handle.net/1808/19059
    Collections
    • Chemistry Dissertations and Theses [336]
    • Dissertations [4474]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps