Revealing Remodeler Function: Varied and Unique
Issue Date
2015-05-31Author
Eastlund, Allen
Publisher
University of Kansas
Format
107 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Physics & Astronomy
Rights
Copyright held by the author.
Metadata
Show full item recordAbstract
Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell’s machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.
Collections
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.