KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advanced Source Reconstruction and Volume Conductor Modeling for Fetal Magnetocardiography

    Thumbnail
    View/Open
    Tao_ku_0099D_13836_DATA_1.pdf (4.383Mb)
    Issue Date
    2015-05-31
    Author
    Tao, Rong
    Publisher
    University of Kansas
    Format
    121 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Bioengineering
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Abstract Fetuses that are identified with cardiac hypotrophy, hypertension and metabolic anomalies have higher risk of suffering from various health problems in their later life. Therefore, the early detection of congenital heart anomalies is critical for monitoring or prompt interventions, which can reduce the risks of congestive heart failure. Compared to adult cardiac monitoring, fetal electrophysiological heart monitoring using fetal ECG is extremely difficult due to the low signal amplitude and interferences from the maternal cardiac signal and to the complex environment inside the mother's womb. This problem is even worse in conditions such as diabetic pregnancies because of further signal reduction due to maternal obesity. At the same time, the prevalence of congenital heart anomalies is higher for fetuses of diabetic mothers. The purpose of this thesis is to develop and test fetal magnetocardiography (fMCG) techniques as an alternative diagnostic tool for the detection and monitoring of the fetal heart. fMCG is a novel technique that records the magnetic fields generated by the fetal heart's electric activity. From the aspect of signal processing, magnetic signals generated by the fetal heart are less affected by the low electrical conductivity of the surrounding fetal and maternal tissues compared to the electric signals recorded over the maternal abdomen, and can provide reliable recordings as early as 12 weeks of gestation. However, the fetal heart signals recorded with an array of magnetic sensors at a small distance from the maternal abdomen are affected by the source-to-sensor distance as well as by the geometry of the volume conductor, which is variable in different subjects or in the same subject when recordings are made at different gestational ages. The scope of this thesis is to develop a novel methodology for modeling the fetal heart and volume conductor and to use advanced source reconstruction techniques that can reduce the effect of these confounding factors in evaluating heart magnetic signals. Furthermore, we aim to use these new methods for developing a normative database of fMCG metrics at different gestational ages and test their reliability to detect abnormal patterns of cardiac electrophysiology in pregnancies complicated by maternal diabetes. In the first part of the thesis, we review three current fetal heart monitoring modalities, including fetal electrocardiography (ECG), ultrasonography, and fetal magnetocardiography (fMCG). The advantages and drawbacks of each technique are comparatively discussed. Finally, we discuss the developmental changes of fetal heart through gestation as well as the electromagnetic characteristics of the fetal cardiac activation.
    URI
    http://hdl.handle.net/1808/18431
    Collections
    • Dissertations [4660]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps