KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-Efficiency of Cooperative MIMO Wireless Systems

    Thumbnail
    View/Open
    Muchiri_ku_0099M_13787_DATA_1.pdf (844.1Kb)
    Issue Date
    2014-12-31
    Author
    Muchiri, Daniel N.
    Publisher
    University of Kansas
    Format
    46 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Increasing focus on global warming has challenged the scientific community to develop ways to mitigate its adverse effects. This is more so important as different technologies become an integral part of daily human life. Mobile wireless networks and mobile devices form a significant part of these technologies. It is estimated that there are over four billion mobile phone subscribers worldwide and this number is still growing as more people get connected in developing countries [1]. In addition to the growing number of subscribers, there is an explosive growth in high data applications among mobile terminal users. This has put increased demand on the mobile network in terms of energy needed to support both the growth in subscribers and higher data rates. The mobile wireless industry therefore has a significant part to play in the mitigation of global warming effects. To achieve this goal, there is a need to develop and design energy efficient communication schemes for deployment in future networks and upgrades to existing networks. This is not only done in the wireless communication infrastructure but also in mobile terminals. In this thesis a practical power consumption model which includes circuit power consumption from the different components in a transceiver chain is analyzed. This is of great significance to practical system design when doing energy consumption and energy efficiency analysis. The proposed power consumption model is then used to evaluate the energy efficiency in the context of cooperative Multiple Input Multiple Output (MIMO) systems.
    URI
    http://hdl.handle.net/1808/18376
    Collections
    • Engineering Dissertations and Theses [705]
    • Theses [3228]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps