ATTENTION: The software behind KU ScholarWorks is being upgraded to a new version. Starting July 15th, users will not be able to log in to the system, add items, nor make any changes until the new version is in place at the end of July. Searching for articles and opening files will continue to work while the system is being updated. If you have any questions, please contact Marianne Reed at mreed@ku.edu .

Show simple item record

dc.contributor.authorYan, Shirley ShiDu
dc.contributor.authorStern, David M.
dc.contributor.authorKane, Michael D.
dc.contributor.authorKuo, Yu-Min
dc.contributor.authorLampert, Heather C.
dc.contributor.authorRoher, Alex E.
dc.date.accessioned2015-05-28T15:37:53Z
dc.date.available2015-05-28T15:37:53Z
dc.date.issued1998
dc.identifier.citationYan, Shirley ShiDu, David Stern, Michael D. Kane, Yu-Min Kuo, Heather C. Lampert, and Alex E. Roher. "RAGE-AB Interactions in the Pathophysiology of Alzheimer's Disease." Restorative Neurology and Neuroscience 12.2,3 (1998): 167-73. Web. 28 May 2015.en_US
dc.identifier.urihttp://hdl.handle.net/1808/17866
dc.descriptionThis is the published version. Copyright 1998 IOS Press.en_US
dc.description.abstractRAGE is a cell surface molecule primarily identified for its capacity to bind advanced glycation end-products and amphoterin. Immunocytochemical studies demonstrated that in Alzheimer's Disease (AD) the expression of RAGE is elevated in neurons close to neuritic plaque beta-amyloid (AB) deposits and in the cells of AB containing vessels. Cross-linking of surface bound AB 1-40 to endothelial cells, yielded a band of 50 kDa identified as RAGE. Using the soluble extracellular domain of recombinant human RAGE, we found that AB binds to RAGE with a Kd = 57 ± 14 nM, a value close to those found for mouse brain endothelial cells and rat cortical neurons. The interaction of AB with RAGE in neuronal, endothelial, and RAGE-transfected COS-1 cells induced oxidative stress, as assessed by the TBARS and MTT assays. ELISA demonstrated a 2.5 times increase of RAGE in AD over control brains. Activated microglia also showed elevated expression of RAGE. In the BV-2 microglial cell line, RAGE bound AB in dose dependent manner with a Kd of 25 ± 9 nM. Soluble AB induced the migration of microglia along a concentration gradient, while immobilized AB arrested this migration. AB-RAGE interaction also activated NF-kB, resulting in neuronal up-regulation of macrophage-colony stimulating factor (M-CSF) which also induced microglial migration. Taken together, our data suggest that RAGE-AB interactions play an important role in the pathophysiology of Alzheimer's Disease.en_US
dc.publisherIOS Pressen_US
dc.titleRAGE-AB Interactions in the Pathophysiology of Alzheimer's Diseaseen_US
dc.typeArticle
kusw.kuauthorYan, Shirley ShiDu
kusw.kudepartmentPharmacology & Toxicologyen_US
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record