Show simple item record

dc.contributor.authorLeon, Jorge A.
dc.contributor.authorNualart, David
dc.date.accessioned2015-03-11T20:36:18Z
dc.date.available2015-03-11T20:36:18Z
dc.date.issued1998-05-01
dc.identifier.citationLe{\'o}n, Jorge A.; Nualart, David. Stochastic evolution equations with random generators. Ann. Probab. 26 (1998), no. 1, 149--186. http://dx.doi.org/10.1214/aop/1022855415.en_US
dc.identifier.urihttp://hdl.handle.net/1808/17054
dc.descriptionThis is the published version, also available here: http://dx.doi.org/10.1214/aop/1022855415.en_US
dc.description.abstractWe prove the existence of a unique mild solution for a stochastic evolution equation on a Hilbert space driven by a cylindrical Wiener process. The generator of the corresponding evolution system is supposed to be random and adapted to the filtration generated by the Wiener process. The proof is based on a maximal inequality for the Skorohod integral deduced from the Itô’s formula for this anticipating stochastic integral.en_US
dc.publisherInstitute of Mathematical Statistics (IMS)en_US
dc.subjectStochastic evolution equationsen_US
dc.subjectSkorohod integralen_US
dc.subjectstochastic anticipating calculusen_US
dc.titleStochastic evolution equations with random generatorsen_US
dc.typeArticle
kusw.kuauthorNualart, David
kusw.kudepartmentMathematicsen_US
kusw.oanotesOn author's personal website or open access repository. On a non-profit server. Version must be exactly as published in the journal. Must link to publisher version. PDF of all published articles are automatically placed in archiv. Publisher's version/PDF may be used. NIH authors may post authors' own version in PubMed Central for release <num>12</num> <period units="month">months</period> after publication.en_US
dc.identifier.doi10.1214/aop/1022855415
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record