KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Variational Mesh Adaptation Methods for Axisymmetrical Problems

    Thumbnail
    View/Open
    HuangW_SJoNA_41(1)235.pdf (864.7Kb)
    Issue Date
    2003-01-01
    Author
    Cao, Weiming
    Carretero-Gonzalez, Ricardo
    Huang, Weizhang
    Russell, Robert D.
    Publisher
    Society for Industrial and Applied Mathematics
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    We study variational mesh adaptation for axially symmetric solutions to two-dimensional problems. The study is focused on the relationship between the mesh density distribution and the monitor function and is carried out for a traditional functional that includes several widely used variational methods as special cases and a recently proposed functional that allows for a weighting between mesh isotropy (or regularity) and global equidistribution of the monitor function. The main results are stated in Theorems \ref{thm4.1} and \ref{thm4.2}. For axially symmetric problems, it is natural to choose axially symmetric mesh adaptation. To this end, it is reasonable to use the monitor function in the form $G = \lambda_1(r) {\mbox{\boldmath ${e}$}}_r {\mbox{\boldmath ${e}$}}_r^T + \lambda_2(r) {\mbox{\boldmath ${e}$}} _\theta {\mbox{\boldmath ${e}$}}_\theta^T $, where ${\mbox{\boldmath ${e}$}}_r$ and ${\mbox{\boldmath ${e}$}}_\theta$ are the radial and angular unit vectors.

    It is shown that when higher mesh concentration at the origin is desired, a choice of $\lambda_1$ and $\lambda_2$ satisfying $\lambda_1(0) < \lambda_2(0)$ will make the mesh denser at $r=0$ than in the surrounding area whether or not $\lambda_1$ has a maximum value at r=0. The purpose can also be served by choosing $\lambda_1$ to have a local maximum at r=0 when a Winslow-type monitor function with $\lambda_1(r) = \lambda_2(r)$ is employed. On the other hand, it is shown that the traditional functional provides little control over mesh concentration around a ring $r = r_\lambda > 0$ by choosing $\lambda_1$ and $\lambda_2$.

    In contrast, numerical results show that the new functional provides better control of the mesh concentration through the monitor function. Two-dimensional numerical results are presented to support the analysis.
    Description
    This is the published version, also available here: http://dx.doi.org/10.1137/S0036142902401591.
    URI
    http://hdl.handle.net/1808/16875
    DOI
    https://doi.org/10.1137/S0036142902401591
    Collections
    • Mathematics Scholarly Works [282]
    Citation
    Cao, Weiming., Carretero-GOnzalez, Ricardo., Huang, Weizhang., Russell, Robert D. "Variational mesh adaptation methods for axisymmetrical problems." SIAM J. Numer. Anal., 41(1), 235–257. (23 pages). http://dx.doi.org/10.1137/S0036142902401591.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps