Show simple item record

dc.contributor.authorPapa, Riccardo
dc.contributor.authorMorrison, Clayton M.
dc.contributor.authorWalters, James R.
dc.contributor.authorCounterman, Brian A.
dc.contributor.authorChen, Rui
dc.contributor.authorHalder, Georg
dc.contributor.authorFerguson, Laura
dc.contributor.authorChamberlain, Nicola
dc.contributor.authorffrench-Constant, Richard
dc.contributor.authorKapan, Durrell D.
dc.contributor.authorJiggins, Chris D.
dc.contributor.authorReed, Robert D.
dc.contributor.authorMcMillan, William O.
dc.date.accessioned2015-02-24T22:04:59Z
dc.date.available2015-02-24T22:04:59Z
dc.date.issued2008-07-22
dc.identifier.citationPapa, Riccardo et al. (2008). "Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies." http://www.dx.doi.org/10.1186/1471-2164-9-345en_US
dc.identifier.issn1471-2164
dc.identifier.urihttp://hdl.handle.net/1808/16791
dc.description.abstractBackground: With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. Results: Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. Conclusion: Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.en_US
dc.publisherBioMed Centralen_US
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleHighly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterfliesen_US
dc.typeArticle
kusw.kuauthorWalters, James R.
kusw.kudepartmentEcology and Evolutionary Biologyen_US
dc.identifier.doi10.1186/1471-2164-9-345
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Except where otherwise noted, this item's license is described as: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited