dc.contributor.author | Liao, Sheng-Lun | |
dc.contributor.author | Ho, Tak-San | |
dc.contributor.author | Rabitz, Herschel | |
dc.contributor.author | Chu, Shih-I | |
dc.date.accessioned | 2015-01-09T19:15:17Z | |
dc.date.available | 2015-01-09T19:15:17Z | |
dc.date.issued | 2013-01-25 | |
dc.identifier.citation | Liao, Sheng-Lun., Ho, Tak-San., Rabitz, Herschel., Chu, Shih-I. "Maximum attainable field-free molecular orientation of a thermal ensemble with near–single-cycle THz pulses." Phys. Rev. A 87, 013429 – Published 25 January 2013. http://dx.doi.org/10.1103/PhysRevA.87.013429. | |
dc.identifier.uri | http://hdl.handle.net/1808/16220 | |
dc.description | This is the published version, also available here: | |
dc.description.abstract | Recently, single-cycle THz pulses have been demonstrated in the laboratory to successfully induce field-free orientation in gas-phase polar molecules at room temperature [Phys. Rev. Lett. 107, 163603 (2011)]. In this paper, we examine the maximum attainable field-free molecular orientation with optimally shaped linearly polarized near–single-cycle THz laser pulses of a thermal ensemble. Large-scale benchmark optimal control simulations are performed, including rotational energy levels with the rotational quantum numbers up to J=100 for OCS linear molecules. The simulations are made possible by an extension of the recently formulated fast search algorithm, the two-point boundary-value quantum control paradigm, to the mixed-states optimal control problems in the present work. It is shown that a very high degree of field-free orientation can be achieved by strong, optimally shaped near–single-cycle THz pulses. The extensive numerical simulations showed that the maximum attainable J-dependent field-free orientation (equal to 0.714 for J=60 and 0.837 for J=100 at 100 K) in the near–single-cycle THz pulse region is close to 92% of the corresponding optimal bound that can be attained by arbitrarily long pulses. It is also found that a smaller amplitude for the optimal control field corresponds to a smaller J (e.g., ≈0.005 a.u. for J=60 and ≈0.01 a.u. for J=100) in the model simulations. The latter finding may underline the actual experimental performance of the field-free molecular orientation, since presently the available amplitude of single-cycle THz pulses can only reach slightly beyond 20MV/cm (≈0.0038 a.u.). | |
dc.publisher | American Physical Society | |
dc.title | Maximum attainable field-free molecular orientation of a thermal ensemble with near–single-cycle THz pulses | |
dc.type | Article | |
kusw.kuauthor | Chu, Shih-I | |
kusw.kudepartment | Chemistry | |
kusw.oanotes | Journal: Physical Review A (ISSN: 1050-2947, ESSN: 1094-1622)
RoMEO: This is a RoMEO green journal
Paid OA: A paid open access option is available for this journal.
Author's Pre-print: Author can archive pre-print (ie pre-refereeing)
Author's Post-print: Author can archive post-print (ie final draft post-refereeing)
Publisher's Version/PDF: Author can archive publisher's version/PDF
General Conditions:
On author's personal website, employer's website or institutional repository
Author's post-print on open repository
Publisher's version/PDF may be used
Link to publisher version required
Publisher copyright and source must be acknowledged with citation
Mandated OA: (Awaiting information)
Paid Open Access: Open Access
Notes:
Publisher last contacted on 29/02/2012
Publisher last reviewed on 27/10/2014
Copyright: Policy
Updated: 27-Oct-2014 - Suggest an update for this record
Link to this page: http://www.sherpa.ac.uk/romeo/issn/1050-2947/
Published by: American Physical Society - Green Policies in RoMEO | |
kusw.oastatus | fullparticipation | |
dc.identifier.doi | 10.1103/PhysRevA.87.013429 | |
kusw.oaversion | Scholarly/refereed, publisher version | |
kusw.oapolicy | This item meets KU Open Access policy criteria. | |
dc.rights.accessrights | openAccess | |