Show simple item record

dc.contributor.authorLiao, Sheng-Lun
dc.contributor.authorHo, Tak-San
dc.contributor.authorRabitz, Herschel
dc.contributor.authorChu, Shih-I
dc.date.accessioned2015-01-09T19:15:17Z
dc.date.available2015-01-09T19:15:17Z
dc.date.issued2013-01-25
dc.identifier.citationLiao, Sheng-Lun., Ho, Tak-San., Rabitz, Herschel., Chu, Shih-I. "Maximum attainable field-free molecular orientation of a thermal ensemble with near–single-cycle THz pulses." Phys. Rev. A 87, 013429 – Published 25 January 2013. http://dx.doi.org/10.1103/PhysRevA.87.013429.
dc.identifier.urihttp://hdl.handle.net/1808/16220
dc.descriptionThis is the published version, also available here:
dc.description.abstractRecently, single-cycle THz pulses have been demonstrated in the laboratory to successfully induce field-free orientation in gas-phase polar molecules at room temperature [Phys. Rev. Lett. 107, 163603 (2011)]. In this paper, we examine the maximum attainable field-free molecular orientation with optimally shaped linearly polarized near–single-cycle THz laser pulses of a thermal ensemble. Large-scale benchmark optimal control simulations are performed, including rotational energy levels with the rotational quantum numbers up to J=100 for OCS linear molecules. The simulations are made possible by an extension of the recently formulated fast search algorithm, the two-point boundary-value quantum control paradigm, to the mixed-states optimal control problems in the present work. It is shown that a very high degree of field-free orientation can be achieved by strong, optimally shaped near–single-cycle THz pulses. The extensive numerical simulations showed that the maximum attainable J-dependent field-free orientation (equal to 0.714 for J=60 and 0.837 for J=100 at 100 K) in the near–single-cycle THz pulse region is close to 92% of the corresponding optimal bound that can be attained by arbitrarily long pulses. It is also found that a smaller amplitude for the optimal control field corresponds to a smaller J (e.g., ≈0.005 a.u. for J=60 and ≈0.01 a.u. for J=100) in the model simulations. The latter finding may underline the actual experimental performance of the field-free molecular orientation, since presently the available amplitude of single-cycle THz pulses can only reach slightly beyond 20MV/cm (≈0.0038 a.u.).
dc.publisherAmerican Physical Society
dc.titleMaximum attainable field-free molecular orientation of a thermal ensemble with near–single-cycle THz pulses
dc.typeArticle
kusw.kuauthorChu, Shih-I
kusw.kudepartmentChemistry
kusw.oastatusfullparticipation
dc.identifier.doi10.1103/PhysRevA.87.013429
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item meets KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record